亚星游戏官网-www.yaxin868.com

山东亚星游戏官网机床有限公司铣床官方网站今天是:2025-06-17切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

利用磁传感器阵列的位置检测的制作方法

时间:2025-06-17    作者: 管理员

专利名称:利用磁传感器阵列的位置检测的制作方法
技术领域:
实施例总体上涉及传感器方法和系统。实施例还涉及位置检测设备。另外,实施 例涉及磁传感器。实施例还涉及用于线性和旋转感测应用的方法和系统。另外,实施例涉 及热补偿方法和系统。
背景技术:
磁阻(MR)阵列技术在各种商业、消费者和工业检测应用中得以使用。在一些常规 MR系统中,能够提供用于确定可沿路径移动的构件的位置的装置。在这样的设备中,磁体 (magnet)能够被附于可移动的构件并且磁场换能器阵列被定位成邻近所述路径。当磁体接 近、通过和离开换能器时,换能器提供变化的输出信号,其能够由表示任意换能器的单个特 性曲线来表示。为了确定可移动构件的位置,对换能器进行电子扫描并且从具有指示与磁体的相 对邻近的输出的换能器组中选择数据。然后能够利用曲线拟合算法来确定数据对特性曲线 的最佳拟合。通过沿位置轴放置特性曲线,可以确定磁体的位置并且因此确定可移动构件 的位置。在另一种常规MR设备中,能够实现位置确定装置,其包括被附于可移动构件的磁 体,该可移动构件沿着有限长度的预定义路径移动。磁场换能器阵列能够被定位成邻近所 述预定义路径。当磁体接近、通过和离开每个换能器时,换能器能够提供输出信号。还能够 提供校正机制用以校正由换能器的非线性所导致的残差(residual error)。优选地,这样的校正机制利用预定函数来近似残差,并且应用对应于所述预定函 数的校正系数来补偿残差。通过对换能器的非线性进行校正,可以减小磁体的长度和/或 减小换能器的间距。例如,在美国专利号5,589,769,〃 Position Detection Apparatus Including a Circuit for Receiving a Plurality of Output Signal Values and Fitting the Output Signal Values to a Curve"中公开了常规磁感测方法的示例,其于1996年12月31日被 授权给Donald R. Krahn,并且被转让给Honeywell International Inc.。在美国专利号6, 097, 183,“ Position Detection Apparatus with Correction for Non-Linear Sensor Regions “中公开了磁感测方法的另一个示例,其在2000年8月1日被授权给Goetz等 人,并且也被转让给Honeywell International Inc.。在此将美国专利号5,589,769和 6,097,183的全部内容引入以供参考。这样的基于MR的设备通常利用印刷电路板(PCB)组 件上的分立部件(discrete component)来产生最终所得的功能。磁阻传感器,特别是基于阵列配置的各向异性磁阻(AMR)传感器的一个问题是这 样的系统常常依靠以相等间距配置的磁阻元件阵列的使用。在线性阵列的情况下,这意味 着线性的中心线到中心线的间距标称是相等的。虽然这适合于一些配置,但是这种规则间 距(regular spacing)阻碍了高准确度感测。一种用于改善感测的方法包括引入额外的磁 阻元件。然而,这种方法只是增加了传感器设备的整体生产成本。因此,相信对于与这样的 现有技术传感器设备相关联的问题的解决方案是基于不规则间距而非规则间距的阵列的 设计和配置,如在此所更为详细讨论的。

发明内容
以下概要被提供以便于理解只有实施例才有的一些创造性特征,并且其不旨在作 为完全描述。通过将整个说明书、权利要求、附图和摘要作为整体能够获得对所公开的实施 例的各个方面的充分理解。因此,本发明的一个方面是提供改进的传感器方法和系统。本发明的另一个方面是提供改进的位置检测设备。本发明的另一个方面是提供改进的AMR传感器。本发明的另一个方面是提供改进的线性和旋转的感测应用。本发明的又一个方面是提供磁阻传感器阵列系统,其中磁阻感测部件彼此被以不 规则的方式隔开,以便优化其传感器数据结果。如在此所描述的,现在能够获得本发明的前述方面和其他目标和优点。公开了一 种磁阻传感器系统,其包括多个芯片载体,以使得所述多个芯片载体之中的每个集成电路 与相应的磁阻感测部件相关联。多个磁阻感测部件能够被排列成阵列,其中所述多个磁阻 部件之中的每个磁阻部件与所述多个芯片载体之中的相应的集成电路相关联,并且其中所 述多个磁阻感测部件包括彼此被不规则隔开的感测部件,以便优化阵列的性能并且满足特 定磁阻感测应用的要求。根据设计考虑,这可以被配置成线性阵列或旋转阵列。所述阵列也能够被配置在 印刷电路板(PCB)上。通常,通过减小所关心的特定区域中两个元件之间的间距,能够在该 区域上实现准确度的增加。变化的元件间距能够被设计到阵列中以根据区域提供不同的性 能等级。


附图被并入说明书并形成说明书的一部分,其进一步说明实施例,并且与详细的 描述一起用于解释所公开的实施例的原理,在附图中全部单独的视图范围内,相同附图标 记指代相同的或者功能类似的元件。图1图示了磁阻阵列传感器系统的顶视图2图示了描绘具有规则间距的八元件磁阻阵列传感器的示例性曲线的曲线图;图3图示了描绘作为处理磁阻阵列算法的结果而产生的标准化和补偿的曲线图。图4图示了描绘磁阻阵列算法所产生的数据的曲线图,其中传感器比(ratio)相 对于温度保持恒定;图5图示了描绘磁阻阵列算法所产生的数据的曲线图,其中这样的数据包括根据 利用傅立叶补偿所获得的线性化而拟合的直线;图6图示了能够根据PCB配置而实现的示例性线性磁阻阵列;图7图示了能够根据PCB配置而实现的扇形(segment)形式的示例性旋转磁阻阵 列;图8图示了能够根据PCB配置而实现的半圆形式的示例性旋转磁阻阵列;图9图示了能够根据PCB配置而实现的低分辨率圆形式的示例性旋转磁阻阵列;图10图示了能够根据PCB配置而实现的高分辨率圆形式的示例性旋转磁阻阵 列;图11图示了其中具有相等元件间距的八元件磁阻阵列传感器系统;图12图示了描绘能够通过图11所描绘的八元件磁阻阵列传感器系统而产生的数 据的曲线图;图13图示了其中具有相等元件间距的八元件磁阻阵列传感器系统,其中这样的 间距不同于图11所描绘的配置中出现的间距。图14图示了描绘能够通过图13所描绘的八元件磁阻阵列传感器系统而产生的数 据的曲线图;图15图示了根据优选实施例的其中具有不规则元件间距的八元件磁阻阵列传感 器系统;图16图示了描绘能够通过图15所描绘的磁阻阵列传感器系统而产生的数据的曲 线图;图17图示了根据可替换的实施例的具有较宽角间距的旋转磁阻阵列传感器系 统;图18图示了根据可替换的实施例的描绘能够通过图17所描绘的旋转磁阻阵列传 感器系统而产生的数据的曲线图;图19图示了根据可替换的实施例的具有较窄角间距的旋转磁阻阵列传感器系 统;以及图20图示了根据可替换的实施例的描绘能够通过图19所描绘的旋转磁阻阵列传 感器系统而产生的数据的曲线图。
具体实施例方式在这些非限制性示例中所讨论的特定值和配置能够被改变,并且仅被引用来说明 至少一个实施例,而非旨在限制本发明的范围。图1图示了磁阻感测系统100的顶视图,其出于整体说明的目的而被描述并且用 于描述其中能够实现优选实施例的情境。系统100通常包括芯片载体组,例如,诸如芯片载 体160、162和164,它们用作用于保持相应磁阻桥接电路的121、123和125的外壳或载体。根据设计考虑,桥接电路121、123和125的均能够被优选地实现为各向异性磁阻(AMR)惠 斯登(Wheatstone)桥接电路。系统100还包括偏磁(biasing magnet) 102。与偏磁102相 关联的偏磁移动的方向主要由箭头104和106来指示。图1中还描绘了与磁体102相关联 的磁场线110和108。芯片载体160包括多个电连接或管脚110、112、114、116、118、120、122、124。类似 地,芯片载体162包括多个电连接或管脚126、128、130、132、134、136、138、140。同样,芯片 载体164包括多个电连接或管脚142、144、146、148、150、152、154、156。通常芯片载体160、 162、164和相应的AMR桥接电路能够被集中在一起以形成系统100的磁阻阵列。注意到,尽 管在图1中仅描绘了三个AMR桥接电路121、123、125,但是根据设计考虑,磁阻阵列100能 够被配置成具有更多或更少的AMR桥接电路和相关联的芯片载体设备。例如,可以实现具 有八个AMR桥接电路的磁阻阵列100。偏磁102的移动产生来自每个磁阻桥接电路121、123、125的正弦信号响应。磁阻 桥接电路121、123、125所产生的AMR桥输出彼此几乎相等;然而,由于其中心线到中心线间 距的缘故,它们各自的相位被移动。因此,能够实施不同的感测机制以在AMR桥接电路121、 123、125之间进行内插以便获得高的绝对准确度。图2图示了描绘具有规则间距的八元件磁阻阵列传感器的示例性曲线的曲线图 200。曲线图200包括与在曲线图200中所描绘的数据相关联的图注202。y轴204主要绘 出标准化传感器输出数据,而χ轴206跟踪(track)以微米为单位的位置数据。图3图示了描绘作为处理磁阻阵列算法的结果而产生的标准化和补偿的曲线图 300。曲线图300与跟踪曲线图300所描绘的数据的图注302相关联。y轴304绘出以数据 为单位的传感器响应信息,而χ轴306跟踪以毫米为单位的位置数据。图4图示了描绘通过磁阻阵列算法而产生的数据的曲线图400,其中传感器比相 对于温度保持恒定。曲线图400包括与曲线图400所绘出的数据相关联的图注402。y轴 402跟踪传感器比数据(ration data),而χ轴跟踪以毫米为单位的位置数据。因此,曲线 图400中所描绘的传感器比随温度变化而保持恒定。传感器比通常由公式SA/(SA-SB)给 出,其中SA与“Α”传感器相关联并且传感器SB与“B”传感器相关联。图5图示了描述通过磁阻阵列算法而产生的数据的曲线图500,其中这样的数据 包括根据利用傅立叶补偿所获得的线性化而拟合的直线。图注501与曲线图500相关联并 且涉及曲线图500中所绘出的补偿数据和原始数据。y轴502主要跟踪成比例的(scaled) 输出数据,而χ轴504跟踪以毫米为单位的位置数据。图6图示了能够根据PCB配置而实现的示例性线性磁阻阵列600。图7图示了能 够根据PCB配置而实现的扇形形式的示例性旋转磁阻阵列700。类似地,图8图示了能够 根据PCB配置而实现的半圆形式的示例性旋转磁阻阵列800。同样,图9图示了能够根据 PCB配置而实现的低分辨率圆形式的示例性旋转磁阻阵列900。最后,图10图示了能够根 据PCB配置而实现的高分辨率圆形式的示例性旋转磁阻阵列1000。给出图6-10所描绘的 磁阻阵列是为了表明很多不同的磁阻阵列形式都是可能的。图11图示了其中具有相等或规则元件间距的八元件磁阻阵列传感器系统1100。 注意到,在图1和11中,相同附图标记表示相同或相似的部分或元件。因此,八元件磁阻阵 列传感器系统1100本质上是图1所描绘的传感器系统100的三元件配置的一种变化。除包括芯片载体160、161和164之外,八元件磁阻阵列传感器系统1100包括芯片载体166、 168、170、172和174,其本质上与芯片载体160、161、165的一个或多个相同。芯片载体166、 168、170、172和174分别与AMR桥接电路127、129、131、133和135相关联。在图11中由变 量χ所表示的长度来分别指示AMR桥接电路之间的间距。在一种可能的实施方式中,例如, 变量χ能够是12. 00毫米。之前所有的磁阻阵列和感测配置都利用以相等间距配置的元件阵列,理解这点很 重要。在线性阵列的情况下,这意味着线性的中心线到中心线的距离标称是相等的。在旋 转阵列的情况下,这意味着中心线到中心线的弧标称是相等的。通过仿真和分析,已经确定存在着通过减小所关心区域中的元件对之间的间距来 优化阵列的特定区域中的绝对准确度的特有能力。然后,能够增加阵列内剩余元件之间的 间距以保持阵列的总长度。因此,在此描述示例性仿真数据,其说明了能够利用该方法获得 的显著的性能增加。图12图示了描绘能够通过图11所描绘的八元件磁阻阵列传感器系统1100而产 生的数据的曲线图1200。曲线图1200主要包括表示曲线图1200所绘出的误差图(error plot)的图注1206。y轴1202主要跟踪以LSB (即“最低有效位”或量化电平(quantization level))为单位的误差数据,而χ轴1204跟踪以毫米为单位的位置数据。曲线图1200图 示了在25摄氏度、基于从具有12. OOmm(毫米)的相等元件间距的八元件84. 00线性磁阻 阵列或系统(例如,像图11所描绘的八元件磁阻阵列传感器系统1100)产生的数据的、以 LSB为单位的位置误差数据。图13图示了其中具有相等元件间距的八元件磁阻阵列传感器系统1300,其中这 样的间距不同于图11所描绘的配置中出现的间距。磁阻阵列传感器1300还被配置成具有 “y”长度的相等间距和总长度“ζ”。在一种可能的实施方式中,变量y能够表示9. 43毫米 的长度,而变量ζ能够表示66. 00毫米的总长度。因此,磁阻阵列传感器系统1300能够被 实现为具有9. 43mm的相等间距的八元件、66. OOmm线性阵列。图14图示了描绘能够通过图13所描绘的八元件磁阻阵列传感器系统1300而产 生的数据的曲线图1400。曲线图1400与图注1402相关联,图注1402与在曲线图1400中 绘出的数据相关联。y轴1404跟踪以LSB为单位的误差数据,而1轴1406跟踪以毫米为 单位的位置数据。因此,曲线图1400描绘了在24摄氏度、具有9. 43mm相等间距的八元件 66. OOmm线性阵列的、以LSB为单位的绝对位置误差。图15图示了根据优选实施例的其中具有不规则元件间距的八元件磁阻阵列传感 器系统1500。注意到,在图11、13和15中,相同附图标记表示相同或相似的部分或部件。 系统1500不同于图11、13和15中所描绘的系统,这是因为系统1500图示了不规则间距。 例如,长度“S”设置在AMR桥接电路121与AMR桥接电路123之间,而长度“t”存在于AMR 桥接电路123与AMR桥接电路125之间。类似地,不同的长度“U”存在于AMR桥接电路125 与AMR桥接电路127之间。同样,不同的长度“V”设置在AMR桥接电路127与AMR桥接电 路129之间,等等。从AMR桥接电路121的中心线到AMR桥接电路135的中心线的总长度由变量“r,, 表示。因此,例如在一些实施方式中,长度“S”能够是12. 00mm,而长度“t”可以是10. OOmm0 在这样的实施方式中,长度“U”可以是8. OOmm,而长度或间距“V”能够是6. 00mm。与长度“r”相关联的长度或间距例如能够是66. 00mm。因此,八元件磁阻阵列传感器系统1500例 如能够被实现为具有不规则间距的八元件66. OOmm线性阵列。图16图示了描绘能够通过图15所描绘的磁阻阵列传感器系统1500而产生的数 据的曲线图1600。曲线图1600与图注1602相关联,图注1602表示在曲线图1600中绘出 的数据。1轴1604主要跟踪以LSB为单位的误差数据,而χ轴1606绘出以毫米为单位的位 置数据。曲线图1600总体上描绘了在25摄氏度、基于(如图15中所描绘的)具有不规则 间距的八元件66. OOmm线性磁阻阵列的、以LSB为单位的绝对位置误差。根据上述内容,能够假定绝对位置准确度是每对元件的量化电平(最低有效位或 LSB)的量和那些元件之间的间距的函数。量化电平的量通过电子设计来确定并且固定不 变。然而,元件间距是磁路设计的函数并且很容易根据每个应用来优化。如果元件间距被移 动得更加接近,则绝对准确度提高,而如果元件间距被进一步移开,则绝对准确度会变差。如果在阵列的整个长度上都要求高级别的准确度,则必须利用足够量的元件。然 而,如果在阵列内存在一个其中要求非常高级别的准确度的所关心的特定区域,而对于阵 列的其余部分不需要同样高的准确度,则可以在设计中利用较少的元件。只有其中要求高 级别准确度的所关心的特定区域才需要具有小的元件间距。前面的附图主要依靠线性磁阻阵列配置,其提供了解释实施不规则元件间距的新 颖性的示例。这个概念同样也适于所有旋转磁阻阵列配置,以下将更详细地提供其中一些 示例。图17图示了根据可替换的实施例的具有较宽角间距的旋转磁阻阵列传感器系统 1700。系统1700主要包括四个磁阻感测部件S4、S1、S3和S2。箭头M表示与系统1700相 关联的角位(angular position)或磁矢量。如框1702所示,指示了处于-37. 5度角位的系 统1700,而在框1704,图示了处于-15. 5度角位的系统1700。此后,在框1706,描绘了处于 +15. 5度角位的系统1700。最后,如框1708所示,指示了处于+37. 5度角位的系统1700。图17所描绘的过程表明当偏磁或磁路以一角度旋转时,晶片(die)上所得的场 看起来像是类似钟表上的指针进行旋转的统一矢量。Sl的中心线从-37. 5度到-15. 5度, 然后到+15. 5度,最后到+37. 5度。磁阻部件或AMR元件之间的角间距能够被提供如下(a) Sl & S2 = 22. 0 度;(b)S2 & S3 = 31. 0 度;以及(c) S3 & S4 = 22. 0 度。图18图示了根据可替换的实施例的描述能够通过图17所描绘的旋转磁阻阵列传 感器系统1700而产生的数据的曲线图1800。曲线图1800通常与图注1802相关联,图注 1802提供对在曲线图1800中绘出的数据的关键指示。y轴1804主要跟踪以LSB为单位的 误差数据,而χ轴1806跟踪以度为单位的角数据。曲线图1800总体上绘出从在零点(zero) 具有31. 0角间距的四元件75. 0度旋转阵列产生的示例性数据。曲线图1800基于摄氏25 度下以LSB为单位的绝对位置误差。图19图示了根据可替换的实施例的具有较窄角间距的旋转磁阻阵列传感器系统 1900。系统1900主要包括四个磁阻感测部件S4、S1、S3和S2。箭头M表示与系统1900相关 联的角位或磁矢量。如框1902所示,指示了处于-37. 5度角位的系统1900,而在框1904,图 示了处于-5. 0度角位的系统1900。此后,在框1906,描绘了处于+5. 0度角位的系统1900。 最后,如框1908所示,描绘了处于+37. 5度角位的系统1900。图19中所描绘的过程表明在偏磁或磁路以一角度旋转时,晶片上所得的场看起来像是类似钟表上的指针进行旋转的统一矢量。Sl的中心线从-37. 5度到-5. 0度,然后到 +5.0度,并最后到+37. 5度。磁阻部件或AMR元件之间的角间距能够被提供如下(a)Sl & S2 = 32. 5 度;(b) S2 & S3 = 10. 0 度;以及(c) S3 & S4 = 32. 5 度。图20图示了根据可替换的实施例的描绘能够通过图19所描绘的旋转磁阻阵列传 感器系统1900而产生的数据的曲线图2000。曲线图2000总体上图示了在25摄氏度、以 LSB为单位的绝对位置误差,并且基于在零点具有10度角间距的四元件75度旋转阵列所产 生的数据。图注2002提供对在曲线图2000中绘出的数据的关键指示,而y轴2004跟踪以 LSB为单位的误差数据。χ轴2006跟踪以度为单位的角数据。应当理解,可以根据需要将上面所公开的变化以及其他特征和功能或其替换方案 组合成许多其他不同的系统或应用。同样,随后可以由本领域技术人员做出这里目前没有 预料到的或者未曾料到的各种替换、修改、变化或改进,所附权利要求旨在包括这些替换、 修改、变化或改进。
权利要求
一种磁阻传感器系统,包括被排列成旋转阵列的多个磁阻感测部件,其中所述多个感测部件之中的至少一些磁阻感测部件彼此被以不规则的方式有角度地隔开,以便优化所述旋转阵列的性能并且满足其特定磁阻感测应用的要求。
2.如权利要求1所述的系统,其中所述阵列被配置在印刷电路板(PCB)上。
3.如权利要求1所述的系统,其中所述多个磁阻部件之中处于所关心区域中的磁阻部 件对之间的角间距的减小使得具有所述旋转阵列的所述所关心区域中的绝对准确度得以 优化。
4.如权利要求1所述的系统,还包括接收来自每个磁阻部件的数据的集成电路。
5.如权利要求1所述的系统,其中所述多个磁阻部件中的每个磁阻部件包括AMR桥接 电路。
6.如权利要求1所述的系统,其中所述多个磁阻部件中的每个磁阻部件包括AMR传感ο
7.如权利要求1所述的系统,还包括多个芯片载体,其中所述多个芯片载体之中的每 个芯片载体与所述多个磁阻部件之中的相应的磁阻部件相关联。
8. 一种磁阻传感器系统,包括被排列成旋转阵列的多个磁阻感测部件,所述旋转阵列被配置在印刷电路板(PCB)上;所述多个感测部件之中的至少一些磁阻感测部件彼此被以不规则的方式有角度地隔 开,以便优化所述旋转阵列的性能并且满足其特定磁阻感测应用的要求;以及其中所述多个磁阻部件之中处于所关心区域中的磁阻部件对之间的角间距的减小使 得具有所述旋转阵列的所述所关心区域中的绝对准确度得以优化。
9.如权利要求8所述的系统,其中所述多个磁阻部件中的每个磁阻部件包括AMR桥接 电路。
10.一种磁阻传感器系统,包括布置成阵列的多个磁阻感测部件,其中所述多个感测部件之中的每个磁阻感测部件彼 此被不规则地隔开,以便优化所述旋转阵列的性能并且满足其特定磁阻感测应用的要求, 所述规则的间距包括所述磁阻感测部件之间的三个或更多个不同的间距。
全文摘要
本发明涉及利用磁传感器阵列的位置检测。一种磁阻传感器系统,包括被排列成旋转阵列的多个磁阻感测部件,其中所述多个感测部件之中的至少一些磁阻感测部件彼此被以不规则的方式有角度地隔开,以便优化所述旋转阵列的性能并且满足其特定磁阻感测应用的要求。
文档编号G01D5/00GK101915590SQ201010261230
公开日2010年12月15日 申请日期2006年9月12日 优先权日2005年9月14日
发明者A·M·徳米特里夫, L·F·里克斯, M·J·拉托里亚 申请人:霍尼韦尔国际公司

  • 专利名称:一种样本中中性粒细胞明胶酶相关脂质运载蛋白的检测方法技术领域:本发明涉及一种样本中中性粒细胞明胶酶相关脂质运载蛋白的检测方法。 背景技术:中性粒细胞明胶酶相关脂质运载蛋白(简称NGAL)是1993年在中性粒细胞内首 先被发现的,与
  • 专利名称:碳氢化合物分析装置的制作方法技术领域:本实用新型涉及一种化合物分析装置,具体涉及一种碳氢化合物分析装置。 背景技术:现有化验室的碳氢化合物分析装置,如图1,由于是单向气流流路,在制氧装置分析时,开启第一阀门3,关闭第二阀门4。四小
  • 专利名称:一种中药材、中药饮片中漂白增色剂残留的半定量检测试剂盒的制作方法技术领域:本发明涉及化学物质的理化分析,具体涉及一种中药材、中药饮片中漂白增色剂残留的半定量检测试剂盒。背景技术:科学研究表明长期或大剂量摄入亚硫酸盐可造成胃肠、肝脏
  • 专利名称:高含量硅稀土合金中稀土总量的测定方法技术领域:本发明属于冶金工业生产的技术领域,涉及冶金生产中的物料成分测定技术, 更具体地说,本发明涉及一种高含量硅稀土合金中稀土总量的测定方法。背景技术:稀土元素是指元素周期表中原子序数从57到
  • 专利名称:一种相控阵超声检测数据采集与处理装置的制作方法技术领域:本实用新型涉及一种检测数据采集与处理装置领域,尤其涉及一种相控阵超声检测数据采集与处理装置。用于海洋平台结构缺陷相控阵超声检测的高速多通道数据采集与处理。背景技术:海洋平台结
  • 专利名称:用于化纤设备的故障检测机构的制作方法技术领域:本实用新型是一种故障检测机构,特别涉及一种用于化纤设备的故障检测机构。 背景技术:现有技术中用于化纤设备的驱动片,当某一驱动片损坏时,无法在不带整个系统 的情况下试机,一台变频有6片驱
山东亚星游戏官网机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 版权所有 All rights reserved 鲁ICP备19044495号-12
【网站地图】【sitemap】