亚星游戏官网-www.yaxin868.com



  • 山东亚星游戏官网机床有限公司铣床官方网站今天是:2025-04-09切换城市[全国]-网站地图
    推荐产品 :
    推荐新闻
    技术文章当前位置:技术文章>

    电容型力学量传感器的制作方法

    时间:2025-04-07    作者: 管理员

    专利名称:电容型力学量传感器的制作方法
    技术领域:
    本发明涉及一种用来检测车辆或类似物体的角速度或加速度的电容型力学量传感器。
    背景技术:
    在图11所示为传统的半导体电容型加速度传感器。半导体电容型加速度传感器507包括一个具有由于作用到此处的加速度而可以移动的重量块521的硅基板502,上玻璃板503具有电极531,通过该电极531由加速度导致的重量块521的位移以电容变化的形式被检测到,下玻璃板501具有电极511,通过该电极511由于加速度导致的重量块521的位移以电容变化的形式被检测到。硅基板502,上玻璃板503和下玻璃板501被层叠并被置于封装504中并使得半导体电容型加速度传感器安装于外部的基片。电极511形成在下玻璃板501的上表面上并通过一个通孔512与形成在基板506上的电极线路图561电连接。电极线路图561与任意电极引脚505连接以接通外部电路。电极531形成在上玻璃板503的下表面上并通过一个通孔532与形成在上玻璃板503的上表面上的电极垫533电连接。同样,电极531通过从各自的电极垫533延伸的金布线551与任意电极引脚505连接,以实现与外部电路的电连接(例如可参考日本专利9-243654A(第6页及附图2))。
    然而根据上面的描述,当多个电极分别安置在多个表面上时,布线或者其类似物必须电连接到外部装置或者类似物的基片上,这样就不能实现降低成本。另外,因为需要封装来保护布线,所以小型化及降低成本就不能实现。同样,还需要一个具有电极图形的基片作为封装的底座,这样就不能降低成本。

    发明内容
    根据上文所述,因此本发明的目的是提供一种微型且便宜的电容型力学量传感器。
    根据本发明的电容型力学量传感器包括一个硅基片,该硅基片具有的重量块由于力学量例如加速度会产生位移;一个第一板用来从其上具有重量块的下表面支撑硅基片;一个第二板用来从上表面支撑硅基片;和一个形成在第一板上的第一电容检测电极,该第一电容检测电极用来基于静电电容的波动差检测重量块的位移。该传感器的特征进一步包括一个形成在第二板上基于静电电容的波动差来检测重量块的位移的第二电容检测电极;一个第一电极,设制成使其垂直并完全延伸通过第二板;一个第二电极,设制成垂直并完全延伸通过第二板以便与第二电容检测电极连接;及一个焊接件,通过所述焊接件使得第一电极和第一电容检测电极相互电连接。
    另外,根据本发明的电容型力学量传感器的特征在于第一、第二板都是玻璃板。
    另外,根据本发明的电容型力学量传感器的特征在于进一步包括一个形成在第二板的上表面的第一电极图形,并使得第一电极图形与第一电极连接;及一个形成在第二板的上表面上的第二电极图形,并使得第二电极图形与第二电极连接。
    据上文所述,由于电极集中设置在一个表面上,根据本发明的电容型力学量传感器就可以直接安装于基片上,而不需要引线焊接过程。这样,就可以降低其成本。另外,外部的封装也变得不是必须的、可以实现微型化并降低成本。


    在附图中图1A和1B是根据本发明的实施例一的电容型力学量传感器的平面图,及图1A中沿A-A′向的截面图;图2A和2B是据本发明的实施例一的电容型力学量传感器的下玻璃板的平面图,及根据本发明的实施例一的电容型力学量传感器的传送侧的正视图;图3A至3C是根据本发明的实施例一的电容型力学量传感器的上玻璃板的平面图,根据本发明的实施例一的电容型力学量传感器的上玻璃板的底部视图,及图3A中沿B-B′向的截面图;图4A和4B是根据本发明的实施例一的电容型力学量传感器的硅基板的平视图,及图4A中沿C-C′向的截面图;图5A至5C是根据本发明的实施例一的连接电容型力学量传感器的硅基板和上玻璃板之前的截面示意图,根据本发明的实施例一的连接电容型力学量传感器的硅基片和上玻璃板之后的截面示意图,及根据本发明的实施例一的电容型力学量传感器的重量块的上、下硅部件通过电极实现电连接的电极截面示意图;图6是根据本发明的实施例二的电容型角速度传感器的截面图;图7是根据本发明的实施例二的电容型角速度传感器的下玻璃板的平面图;图8是根据本发明的实施例二的电容型角速度传感器的硅基板的平面图;图9A和9B是根据本发明的实施例二的电容型角速度传感器的上玻璃板的平面图,及根据本发明的实施例二的电容型角速度传感器的上玻璃板的底部视图;图10A和10B是角速度施加到根据本发明的实施例二的电容型角速度传感器上之前的重量块状态的概念图,及当加速度施加到根据本发明的实施例二的电容型角速度传感器时的重量块运动的概念图;及图11是根据现有技术实例的半导体电容型加速度传感器的截面图。
    具体实施例方式
    本发明的电容型力学量传感器包括一个具有重量块的硅基板,该重量块由于施加到其上的加速度或者类似作用而发生位移,一个作为第一板的下玻璃板,一个作为第二板的上玻璃板。另外,下玻璃板的第一电容检测电极通过一个球形焊接件与上玻璃板的第一电极连接。电极集中安置在上玻璃板的外表面,以使得电容型力学量传感器可以直接安装于外部基片。
    作为基本的加工方法,首先要准备好下玻璃板,接着将硅基板与下玻璃板结合。完成结合之后,球形的焊接件被安置在下玻璃板的第一电容检测电极的预定位置上,下玻璃板的电容检测电极通过该球形的焊接件与上玻璃板的电极的一部分连接。其后,上玻璃板与硅基板结合。
    下面将参考附图对根据本发明的实施例一的电容型加速度传感器和根据本发明的实施例二的电容型角速度传感器进行详细的描述。
    实施例1图1A所示为根据本发明的实施例一的电容型加速度传感器平面图。图1B所示为图1A中沿A-A′向的截面图。
    电容型加速度传感器7具有这样一个结构,其中存在层叠的下玻璃板1、硅基板2、上玻璃板3,该下玻璃板1具有电容检测电极11,该硅基板2具有重量块21,该重量块可由于作用其上的加速度而产生位移,该上玻璃板3具有电容检测电极31和外部电极35。电容型加速度传感器可以通过外部电极35直接安装到外部基片上。此外,焊球14安置在下玻璃板1上的电容检测电极11的一部分中。每一个焊球14都具有一个足够的高度以将电容检测电极11和上玻璃板3的电极33连接。这样,下玻璃板1的电容检测电极11可以与上玻璃板3的电极33电连接。
    图2A所示为根据本发明的实施例一的电容型加速度传感器的下玻璃板的平视图。图2B所示为根据本发明的实施例一的电容型加速度传感器的下玻璃板的传送侧的正视图。
    下玻璃板1是由作为一个主要成分的SiO2制成。因此,这样一种在热膨胀系数上与硅基板2相适应的材料用作下玻璃板1。另外,下玻璃板1的厚度等于或者大于约500μm。电容检测的四个电极11由具有厚度等于或小于1μm的Al或者类似物质做成,并且通过溅射工艺或者类似的方法形成在下玻璃板1与硅基板2的结合表面侧上。这些电极11通过焊球14分别与上玻璃板3的电极33连接,以实现电极11和电极33之间的电连接。
    图3A所示为根据本发明的实施例一的电容型加速度传感器的上玻璃板的平面图。图3B所示是根据本发明的实施例一的电容型加速度传感器的上玻璃板的底部视图。图3C所示是图3A中沿B-B′向的截面图。
    与下玻璃板1类似,上玻璃板3是由作为主要成分的SiO2制成。因此,这样一种在热膨胀系数上与硅基板2相适应的材料用作上玻璃板3。另外,上玻璃板3的厚度等于或者大于100μm。电容检测电极31由厚度等于或者小于1μm的Al或者类似物制成,并安置在相对于上玻璃板3与硅基板2的结合表面凹陷几微米的表面位置上。电容检测电极31通过通孔32a分别电连接到与上玻璃板3的外表面结合的N型硅部件34。与电极31的情况类似,通过溅射Al来用Al填充通孔32a。另外,电极33与各焊球14连接,通过电极33a可以得到在硅基板2的重量块21上的电势,电极33a通过溅射工艺形成在上玻璃板3与硅基板2的结合表面上。电极33和33a通过通孔32b分别与上玻璃板3的外表面结合的N型硅部件34电连接。与电极33和33a的情况相似,通过溅射Al来用Al填充通孔32b。为了形成铝制成的电极垫35,铝通过溅射工艺沉积在N型硅部件34的外表面上。电极垫35允许根据本发明的实施例一的电容型加速度传感器直接安装于外部基片上。
    图4A所示是根据本发明的实施例一的电容型加速度传感器的硅基板的平面图。图4B所示是图4A中C-C′向的截面图。
    为了形成重量块21的简单的制作过程,一个具有在其中形成绝缘层28的SOI基板用作硅基板2。重量块21由于来自外部的加速度而发生位移,重量块21通过蚀刻工艺形成在硅基板2的中央位置。通过上玻璃板3的电极33a,在重量块21上的电压可以从外部终端35中的电极26a获得。因此,可以从外部控制重量块21。
    图5A和5B示出了解释通过压力将Al电极33压向铝电极26a以获得其电接触的状况的截面图。如图5A和5B所示,为了获得电连接,AL电极33和26a通过施加一个压力被挤压,使其被容纳在硅基板2内形成的一个凹陷部分24中。
    另外,图5C所示为一个电极的截面图,通过该电极使得重量块21的上、下硅部件之间电导通。在硅基板2中形成的重量块21、下硅部件22a和上硅部件22b通过一个绝缘层28相互绝缘。因此,为了使得重量块21的上、下硅部件22a和22b在电势上彼此相等,一个台阶式凹陷部分27被形成,使得其垂直并且优选穿透上硅部件22b和绝缘层28延伸,到达下硅部件22a,接着通过溅射工艺形成一个Al电极26b,以覆盖台阶式凹陷部分27和下硅部件22a的底部。
    此外,硅基板2具有横梁部分(beam portion)23,用来支撑重量块21和连接至下玻璃板1和上玻璃板3的阳极部分。
    作为包括制造电容型加速度传感器7的基本方法,在下玻璃板1和硅基板2的位置跟任意位置对齐之后,下玻璃板1和硅基板2相互连接。对于连接,使用阳极连接,其中在周围气温大约300℃下,对下玻璃板1和硅基板2施加大约400v的电压。
    接着,焊球14安装在下玻璃板1上的预定位置上。此后,上玻璃板3和与下玻璃板1结合的硅基板2的位置可以跟任意的位置对齐,使得上玻璃板3和硅基板2通过阳极接合工艺彼此连接。另外,由于阳极连接过程中的加热,还使焊球14变形以得到在上和下电极之间的电连接。
    上面所描述的结构适用于根据本发明的实施例一的电容型加速度传感器,因此电极可以集中设在一个表面上。因此,电容型加速度传感器可以直接安装在基片上而不需要布线焊接工艺,所以得以实现降低成本。另外,外部的封装也变得不必要了,可以实现微型化同时降低了成本。
    此外,电容型加速度传感器已经被描述过,本发明的电容型加速度传感器并不限定为根据实施例一的电容型加速度传感器。
    实施例二图6所示是根据本发明的实施例二的电容型角速度传感器207的截面图。图7所示是根据本发明的实施例二的电容型角速度传感器207的下玻璃板的平面图。在图7中,此处所示的电极安置在下玻璃板201的电容检测侧上。图8所示是根据本发明的实施例二的电容型角速度传感器207的硅基板的平面图。在图8中,所示的结构具有形成在硅基板202的中央的重量块21,和用来支撑重量块21的横梁23。图9A所示是根据本发明的实施例二的电容型角速度传感器207的上玻璃板203的平面图。在图9A中,所示的结构具有设置在上玻璃板203上的电极235,并通过该电极235将根据本发明实施例二的电容型角速度传感器207与外部的基片连接。图9B所示是根据本发明的实施例二的电容型角速度传感器207的上玻璃板203的底部视图。在图9B中,所示的结构具有用于激励重量块21的电极231,和安置在上玻璃板203的电容检测侧上的电容检测电极31。
    图10A和10B所示是当角速度施加到根据本发明的实施例二的电容型角速度传感器207上时,重量块运动的概念视图。在图10A和10B中,概念性地示出了当从外部施加角速度时,在重量块中所产生的科里奥利力(Coriolisforce)的情况。安置在下玻璃板201的中央的电极211和安置在上玻璃板203的中央的电极231是用于在Z轴方向上激励形成在硅基板202的中央的重量块21的电极。当第一正弦波和与第一正弦波相位相差180°的第二正弦波分别加到这些电极上时,重量块21在Z轴方向上振动。同时,如果电容型角速度传感器207经受在图10B中的X轴周围施加的角速度,那么在图10B中在Y轴方向上产生跟Z轴方向上的振动成比例的科里奥利力。重量块21由于科里奥利力而位移。其结果是,使得上和下电极之间得到的静电电容也波动。这个波动值与由没有施加角速度而仅仅是Z轴方向上的振动所引起的静电电容的波动是不同的。电容型角速度传感器可以通过测量电极的静电电容的波动差来实现。
    如上文所述,和根据本发明的实施例一的电容型加速度传感器相似的结构也适用于根据本发明的实施例二的电容型角速度传感器。因此,电极集中安置在一个表面上,使得电容型角速度传感器可以直接结合在基片上而不需要引线焊接工艺。其结果是,降低成本得以实现。另外,外部封装变得没有必要,可以实现微型化并降低了成本。
    另外,尽管对电容型角速度传感器已经作了描述,但是根据本发明的电容型角速度传感器则不限制于根据实施例二的电容型角速度传感器。
    权利要求
    1.一种电容型力学量传感器,包括硅基片,该硅基片具有由于力学量而会产生移动的重量块;第一板,用来从其上形成有重量块的下表面侧支撑硅基片;第二板,用来从上表面支撑硅基片;第一电容检测电极,形成在第一板上,用于根据静电电容的波动差来检测重量块的位移;第二电容检测电极,形成在第二板上,用于根据静电电容的波动差来检测重量块的位移;第一电极,被制成为垂直并完全延伸通过第二板;第二电极,被制成为垂直并完全延伸通过第二板以连接第二电容检测电极;和焊接部件,通过该焊接部件使第一电极和第一电容检测电极相互电连接。
    2.根据权利要求1所述的电容型力学量传感器,其中第一和第二板中的每一个都是玻璃板。
    3.根据权利要求1所述的电容型力学量传感器,进一步包括第一电极图形,形成在第二板的上表面上以与第一电极连接;和第二电极图形,形成在第二板的上表面上以与第二电极连接。
    4.根据权利要求1所述的电容型力学量传感器,其中力学量是加速度。
    5.根据权利要求1所述的电容型力学量传感器,其中力学量是角速度。
    全文摘要
    本发明提供一种微型且便宜的电容型力学量传感器。形成在下玻璃板上的电容检测电极制成为通过垂直并完全延伸通过上玻璃板的通孔与上玻璃板的外表面和焊球相导通。因此,连接到外部基片的电极集中设置在上玻璃板的外表面上,以使得电容型力学量传感器可以直接安装于外部基片。
    文档编号G01C19/56GK1550783SQ20041004517
    公开日2004年12月1日 申请日期2004年5月13日 优先权日2003年5月13日
    发明者枪田光男, 须藤稔, 加藤健二, 二 申请人:精工电子有限公司

    • 专利名称:一种大型注塑机油缸类零件内沟槽的检测工具的制作方法技术领域:本实用新型涉及ー种大型注塑机油缸类零件内沟槽的检测工具背景技术:现有的注塑机油缸类零件内沟槽的检测工具,第一种是内卡规测量式其方式是根据加工油缸类零件内孔及沟槽尺寸;从而
    • 基于动态力直接测量的压电应变常数测量装置及方法【专利摘要】本发明提供一种基于动态力直接测量的压电应变常数测量装置及方法,该装置包括:样品加载头,用于加载待测压电材料;静载荷测量单元,位于样品加载头的上方,并与样品加载头相连,用于测量待测压电
    • 专利名称:驾驶人考试项目边线自检方法技术领域: 本发明涉及一种驾驶人考试项目边线自检方法,主要用于驾驶人考试中的直角转弯、曲线行驶、连续通过障碍、通过单边桥和侧方停车等项目的边线自动检测。背景技术:在驾驶人考试中的直角转弯、曲线行驶、连续通
    • 专利名称:淬火炉超温报警装置的制作方法技术领域:本实用新型涉及一种淬火炉超温报警装置。背景技术:淬火炉上一般无超温报警装置,淬火炉在工作过程中操作者是无法知晓炉内的温度。如果淬火炉已经超温,且又没采取任何措施,则炉内的加工的全部零部件将报废
    • 专利名称:一种碳纳米管聚烟酸复合修饰电极的制备方法及应用的制作方法一种碳纳米管聚烟酸复合修饰电极的制备方法及应用技术领域本发明属于电化学领域,涉及一种修饰电极,具体涉及一种碳纳米管聚烟酸复合修饰电极。背景技术:多巴胺(Dopamine,DA
    • 专利名称:检测器位于聚焦元件内部的x射线系统和方法技术领域:本发明涉及在紧凑设备中用于集中照明样品的χ射线辐射以及用于检测之后由该样品发出的X射线的设备配置和方法。在例如测量石油中硫浓度的X射线荧光应用中, 所提供的敏感度增强具有特殊的优势
    山东亚星游戏官网机床有限公司
    全国服务热线:13062023238
    电话:13062023238
    地址:滕州市龙泉工业园68号
    关键词:铣床数控铣床龙门铣床
    公司二维码
    Copyright 2010-2024 版权所有 All rights reserved 鲁ICP备19044495号-12



    【网站地图】【sitemap】