一种提升面阵探头分辨率的检测方法
【专利摘要】本发明提供了一种提升面阵探头分辨率的检测方法,包括如下步骤:步骤一,在超声波面阵探头上具有N个晶片,并且N个所述晶片以面阵的形式排列;步骤二,芯片控制晶片a发射m次脉冲波射向待测工件;步骤三,被所述待测工件反射回来的脉冲波被晶片a和与晶片a相邻的m-1个晶片依次分别接收;步骤四,当所述N个晶片都发射m次脉冲波,并且经所述待测工件反射回来的脉冲波被全部接收;步骤五,重复步骤一至步骤四的过程,直至探伤完毕;步骤六,主机将接收到的脉冲波经分析处理后得出待测工件的缺陷图形,并通过主机上的显示器显示出来。本发明具有大大提高面阵探测仪的分辨率的优点。
【专利说明】一种提升面阵探头分辨率的检测方法
【技术领域】
[0001]本发明涉及超声波探伤【技术领域】,特别涉及一种提升面阵探头分辨率的检测方法。
【背景技术】
[0002]在金属试件及零件无损检测中,超声波探伤技术是一种重要手段。超声波在被检测材料中传播时,材料的声学特性和内部组织的变化对超声波的传播产生一定的影响,通过对超声波受影响程度和状况的探测从而了解材料性能和结构变化的技术称为超声检测。超声波探伤是利用超声波能透入金属内部,并由一个截面进入另一个截面时,在截面边缘发生反射的特点来检测缺陷零件的一种方法。
[0003]而晶片是超声波探伤仪中最核心的部件,通过晶片发射脉冲波到待测工件,将待测工件反射回来的脉冲波进行处理分析后得出待测工件的缺陷图形,现有技术中,以IOmm直径探头为例,在8*8的晶片阵列中需要52个晶片,而只有晶片之间的间距达到1.25mm时才能覆盖探头的IOmm直径范围,而且每个晶片在工作是都是单独发射和接收脉冲波,这就导致了晶片间距为1.25mm时探伤仪的分辨力不足1.25mm,而不能对零件进行精确探伤,如果通过增加晶片的数量来提高分辨率的话,那么必然会提高探伤仪的成本,而且功耗也会加大。
【发明内容】
[0004]为了解决上述问题,本发明提供了一种不必增加晶片数量就可,并能大大提高探测仪探伤分辨率的一种检测方法。本发明提供的一种提升面面阵分辨率的检测方法的技术方案如下:
[0005]本发明提供了一种提升面阵探头分辨率的检测方法,包括如下步骤:
[0006]步骤一,在超声波面阵探头上具有N个晶片,并且N个晶片以面阵的形式排列,其中N表不晶片的个数;
[0007]步骤二,芯片控制晶片a发射m次脉冲波射向待测工件,其中a表示第a个晶片,m表示发射脉冲的次数;
[0008]步骤三,被待测工件反射回来的脉冲波被晶片a和与晶片a相邻的m_l个晶片依次分别接收;
[0009]步骤四,当所述N个晶片都发射m次脉冲波,并且经待测工件反射回来的脉冲波被全部接收;
[0010]步骤五,重复步骤一至步骤四的过程,直至探伤完毕;
[0011]步骤六,主机将接收到的脉冲波经分析处理后得出待测工件的缺陷图形,并通过主机上的显示器显示出来。
[0012]进一步特征为步骤二还包括如下步骤:
[0013]第一步,计时器预先设定一固定的时间间隔,使其与芯片相连接;[0014]第二步,芯片通过控制与脉冲波发射电路相连接的第一开关,使脉冲波发射电路与第一晶片相连接,第一晶片发射第一次脉冲波射向待测工件;
[0015]第三步,计时器达到时间间隔后,向芯片发送时间信号;
[0016]第四步,芯片接收到时间信号后,控制第一晶片发射第二次脉冲波射向待测工件,直至第一晶片发射第m次脉冲波射向待测工件,第一晶片完成工作,此时与芯片相连接的计数器计数为I ;
[0017]第五步,计时器达到时间间隔后,向芯片发送时间信号;
[0018]第六步,芯片接收到时间信号后,控制脉冲波发射电路与第二晶片相连接,第二晶片发射第一次脉冲波射向待测工件,重复第三步至第四步的工作过程,直至计数器计数为2 ;
[0019]第七步,通过芯片控制第三晶片至晶片N重复第五步至第六步的工作过程,直至计数器计数为N。
[0020]进一步特征为步骤三还包括如下步骤:
[0021]第一步,芯片通过控制与脉冲波接收电路相连接的第二开关,控制脉冲波接收电路与第一晶片相连接,第一晶片接收待测工件反射回来的脉冲波;
[0022]第二步,第一晶片完成接收后,芯片通过控制与脉冲波接收电路相连接的第二开关,使晶片b与脉冲波接收电路相连接,晶片b接收待测工件反射回来的脉冲波,晶片b表示与第一晶片横向相邻的晶片;
[0023]第三步,晶片b完成接收后,芯片通过控制与脉冲波接收电路相连接的第二开关,使晶片C与所述脉冲波接收电路相连接,晶片C接收待测工件反射回来的脉冲波,晶片C表示与第一晶片纵向相邻的晶片;
[0024]第四步,晶片c完成接收后,芯片通过控制与脉冲波接收电路相连接的第二开关,使晶片d与脉冲波接收电路相连接,晶片d接收待测工件反射回来的脉冲波,晶片d表示与第一晶片斜向相邻的晶片;
[0025]第五步,第一晶片完成工作后,第二晶片重复第一步至第四步的过程,直至晶片N完成依次完成第一步至第四步的过程。
[0026]进一步特征为芯片为可编程芯片。
[0027]进一步特征为N个晶片为52个晶片。
[0028]进一步特征为步骤二中的m等于4。
[0029]本发明同现有技术相比,具有以下优点和有益效果:
[0030]1、本发明中每个晶片发射四次脉冲波,并通过该晶片本身、横向相邻的晶片、纵向相邻的晶片和斜向相邻的晶片分别接收,相对于现有技术中的晶片单独发射接收脉冲波,增加了 3倍的采用波形数据,相邻间晶片采样一个发射另一个接收的模式实现了 4倍的插值分辨率,从而提升了探伤仪的采样分辨率,使得通过使用本发明的探测方法的探伤仪的分辨率达到现有技术的4倍,探伤结果更加清晰准确。
[0031]2、本发明是在现有设备基础上进行的改进,其结构简单、成本低,且易于推广。
[0032]3、本发明中增加了计数器,探测仪的探头具有N个晶片,探测仪工作时,每个晶片发射m次脉冲波后计数器计数加1,当计数器计数为N时,芯片控制探测仪重新从第一个晶片开始发射脉冲波,通过反复发射与接收脉冲波,使得探测仪得到的待测工件的缺陷形状更加准确。
[0033]4、本发明中增加了计时器,芯片根据计时器预先设定的时间间隔,控制脉冲波发射的时间间隔。
【专利附图】
【附图说明】
[0034]为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
[0035]图1是本发明一种提升面阵探头分辨率的检测方法的晶片和芯片的连接关系示意图;
[0036]图2是本发明一种提升面阵探头分辨率的检测方法的实施例中晶片面阵结构示意图。
【具体实施方式】
[0037]下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0038]如图1所示,本发明提供了一种提升面阵探头分辨率的检测方法,包括如下步骤:
[0039]步骤一,在超声波面阵探头上具有N个晶片,并且N个晶片以面阵的形式排列,其中N表不晶片的个数;
[0040]步骤二,芯片2控制晶片a发射m次脉冲波射向待测工件,其中a表示第a个晶片,m表示发射脉冲的次数;
[0041]步骤三,被待测工件反射回来的脉冲波被晶片a和与晶片a相邻的m_l个晶片依次分别接收;
[0042]步骤四,当N个晶片都发射m次脉冲波,并且经待测工件反射回来的脉冲波被全部接收;
[0043]步骤五,重复步骤一至步骤四的过程,直至探伤完毕;
[0044]步骤六,主机I将接收到的脉冲波经分析处理后得出待测工件的缺陷图形,并通过主机I上的图1中未标注的显示器显示出来。
[0045]本发明的优选方式为步骤二还包括如下步骤:
[0046]第一步,计时器8预先设定一固定的时间间隔,使其与芯片2相连接;
[0047]第二步,芯片2通过控制与脉冲波发射电路相连接的第一开关5,使脉冲波发射电路3与第一晶片9相连接,第一晶片9发射第一次脉冲波射向待测工件;
[0048]第三步,计时器8达到时间间隔后,向芯片2发送时间信号;
[0049]第四步,芯片2接收到时间信号后,控制第一晶片9发射第二次脉冲波射向待测工件,直至第一晶片9发射第m次脉冲波射向待测工件,第一晶片9完成工作,此时与所述芯片2相连接的计数器7计数为I ;[0050]第五步,计时器8达到时间间隔后,向芯片2发送时间信号;
[0051]第六步,芯片2接收到时间信号后,控制脉冲波发射电路3与第二晶片相连接,第二晶片发射第一次脉冲波射向待测工件,重复第三步至第四步的工作过程,直至计数器7计数为2 ;
[0052]第七步,通过芯片2控制第三晶片至晶片N重复第五步至第六步的工作过程,直至计数器7计数为N。
[0053]步骤三还包括如下步骤:
[0054]第一步,芯片7通过控制与脉冲波接收电路4相连接的第二开关6,控制脉冲波接收电路4与第一晶片9相连接,第一晶片9接收待测工件反射回来的脉冲波;
[0055]第二步,第一晶片9完成接收后,芯片2通过控制与脉冲波接收电路4相连接的第二开关6,使晶片blO与脉冲波接收电路4相连接,晶片blO接收待测工件反射回来的脉冲波,晶片blO表不与第一晶片9横向相邻的晶片;
[0056]第三步,晶片blO完成接收后,芯片2通过控制与脉冲波接收电路4相连接的第二开关6,使晶片cll与所述脉冲波接收电路4相连接,晶片cll接收待测工件反射回来的脉冲波,晶片cll表不与第一晶片9纵向相邻的晶片;
[0057]第四步,晶片cll完成接收后,芯片2通过控制与脉冲波接收电路11相连接的第二开关6,使晶片dl2与脉冲波接收电路4相连接,晶片dl2接收待测工件反射回来的脉冲波,晶片dl2表不与第一晶片9斜向相邻的晶片;
[0058]第五步,第一晶片9完成工作后,第二晶片重复第一步至第四步的过程,直至晶片N完成依次完成第一步至第四步的过程。
[0059]芯片为可编程芯片。
[0060]N个晶片为52个晶片。
[0061]步骤二中的m等于4。
[0062]实施例
[0063]如图2所示,在IOmm直径的超声波面阵探头上具有52个晶片,并且52个晶片以面阵的形式排列,与芯片2相连接的计时器8预先设定一固定的时间间隔,芯片2通过控制与脉冲波发射电路相连接的第一开关5,使脉冲波发射电路3与第一晶片9相连接,第一晶片9发射第一次脉冲波射向待测工件,同时,芯片7通过控制与脉冲波接收电路4相连接的第二开关6,控制脉冲波接收电路4与第一晶片9相连接,第一晶片9接收待测工件反射回来的脉冲波;计时器8达到时间间隔后,向芯片2发送时间信号,芯片2接收到时间信号后,控制第一晶片9发射第二次脉冲波射向待测工件,同时,芯片7通过控制与脉冲波接收电路4相连接的第二开关6,控制脉冲波接收电路4与第二晶片相连接,第二晶片接收待测工件反射回来的脉冲波;计时器8达到时间间隔后,向芯片2发送时间信号,芯片2接收到时间信号后,控制第一晶片9发射第三次脉冲波射向待测工件,同时,芯片7通过控制与脉冲波接收电路4相连接的第二开关6,控制脉冲波接收电路4与第六晶片相连接,第六晶片接收待测工件反射回来的脉冲波;计时器8达到时间间隔后,向芯片2发送时间信号,芯片2接收到时间信号后,控制第一晶片9发射第四次脉冲波射向待测工件,同时,芯片7通过控制与脉冲波接收电路4相连接的第二开关6,控制脉冲波接收电路4与第五晶片相连接,第五晶片接收待测工件反射回来的脉冲波,此时计数器7计数为I。[0064]当计时器8达到时间间隔后,向芯片2发送时间信号,芯片2接收到时间信号后,芯片2通过控制与脉冲波发射电路相连接的第一开关5,使脉冲波发射电路3与第二晶片相连接,第二晶片发射第一次脉冲波射向待测工件,同时,芯片7通过控制与脉冲波接收电路4相连接的第二开关6,控制脉冲波接收电路4与第二晶片相连接,第二晶片接收待测工件反射回来的脉冲波;计时器8达到时间间隔后,向芯片2发送时间信号,芯片2接收到时间信号后,控制第二晶片发射第二次脉冲波射向待测工件,同时,芯片7通过控制与脉冲波接收电路4相连接的第二开关6,控制脉冲波接收电路4与第三晶片相连接,第三晶片接收待测工件反射回来的脉冲波;计时器8达到时间间隔后,向芯片2发送时间信号,芯片2接收到时间信号后,控制第二晶片发射第三次脉冲波射向待测工件,同时,芯片7通过控制与脉冲波接收电路4相连接的第二开关6,控制脉冲波接收电路4与第七晶片相连接,第七晶片接收待测工件反射回来的脉冲波;计时器8达到时间间隔后,向芯片2发送时间信号,芯片2接收到时间信号后,控制第二晶片发射第四次脉冲波射向待测工件,同时,芯片7通过控制与脉冲波接收电路4相连接的第二开关6,控制脉冲波接收电路4与第六晶片相连接,第六晶片接收待测工件反射回来的脉冲波,此时计数器7计数为2。
[0065]其余晶片依次重复上述过程,直至计数器7计数为52时,芯片2再次控制第一晶片到第五十二晶片重复上述过程直至探测仪探测结束,通过上述的晶片发射、接收脉冲波的模式,主机I将52个晶片接收来的脉冲波进行处理分析,并通过主机I上的显示器显示出待测工件的缺陷形状。
[0066]本发明中每个晶片发射四次脉冲波,并通过该晶片本身、横向相邻的晶片、纵向相邻的晶片和斜向相邻的晶片分别接收,相对于现有技术中的晶片单独发射接收脉冲波,增加了 3倍的采用波形数据,相邻间晶片采样一个发射另一个接收的模式实现了 4倍的插值分辨率,从而提升了探伤仪的采样分辨率,使得通过使用本发明的探测方法的探伤仪的分辨率达到现有技术的4倍,探伤结果更加清晰准确。
[0067]本发明是在现有设备基础上进行的改进,其结构简单、成本低,且易于推广。
[0068]本发明中增加了计数器,探测仪的探头具有N个晶片,探测仪工作时,每个晶片发射m次脉冲波后计数器计数加1,当计数器计数为N时,芯片控制探测仪重新从第一个晶片开始发射脉冲波,通过反复发射与接收脉冲波,使得探测仪得到的待测工件的缺陷形状更加准确。
[0069]本发明中增加了计时器,芯片根据计时器预先设定的时间间隔,控制脉冲波发射的时间间隔。
[0070]以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
【权利要求】
1.本发明提供了一种提升面阵探头分辨率的检测方法,其特征在于,包括如下步骤:步骤一,在超声波面阵探头上具有N个晶片,并且N个所述晶片以面阵的形式排列,其中N表不晶片的个数; 步骤二,芯片控制晶片a发射m次脉冲波射向待测工件,其中a表示第a个晶片,m表示发射脉冲的次数; 步骤三,被所述待测工件反射回来的脉冲波被晶片a和与晶片a相邻的m-Ι个晶片依次分别接收; 步骤四,所述N个晶片依次都发射m次脉冲波,并且经所述待测工件反射回来的脉冲波被接收; 步骤五,重复步骤一至步骤四的过程,直至探伤完毕; 步骤六,主机将接收到的脉冲波经分析处理后得出待测工件的缺陷图形,并通过主机上的显示器显示出来。
2.根据权利要求1所述的一种提升面阵探头分辨率的检测方法,其特征在于,所述步骤二还包括如下步骤: 第一步,计时器预先设定一固定的时间间隔,使其与所述芯片相连接; 第二步,所述芯片通过控制与脉冲波发射电路相连接的第一开关,使所述脉冲波发射电路与第一晶片相连接, 所述第一晶片发射第一次脉冲波射向待测工件; 第三步,所述计时器达到时间间隔后,向所述芯片发送时间信号; 第四步,所述芯片接收到时间信号后,控制所述第一晶片发射第二次脉冲波射向待测工件,直至第一晶片发射第m次脉冲波射向待测工件,所述第一晶片完成工作,此时与所述芯片相连接的计数器计数为I ; 第五步,所述计时器达到时间间隔后,向所述芯片发送时间信号; 第六步,所述芯片接收到时间信号后,控制所述脉冲波发射电路与第二晶片相连接,所述第二晶片发射第一次脉冲波射向待测工件,重复第三步至第四步的工作过程,直至所述计数器计数为2 ; 第七步,通过所述芯片控制第三晶片至晶片N重复第五步至第六步的工作过程,直至所述计数器计数为N。
3.根据权利要求2所述的一种提升面阵探头分辨率的检测方法,其特征在于,所述步骤三还包括如下步骤: 第一步,所述芯片通过控制与脉冲波接收电路相连接的第二开关,控制所述脉冲波接收电路与第一晶片相连接,所述第一晶片接收待测工件反射回来的脉冲波; 第二步,所述第一晶片完成接收后,所述芯片通过控制与脉冲波接收电路相连接的第二开关,使晶片b与所述脉冲波接收电路相连接,所述晶片b接收待测工件反射回来的脉冲波,所述晶片b表不与第一晶片横向相邻的晶片; 第三步,所述晶片b完成接收后,所述芯片通过控制与脉冲波接收电路相连接的第二开关,使晶片c与所述脉冲波接收电路相连接,所述晶片c接收待测工件反射回来的脉冲波,所述晶片c表不与第一晶片纵向相邻的晶片;第四步,所述晶片C完成接收后,所述芯片通过控制与脉冲波接收电路相连接的第二开关,使晶片d与所述脉冲波接收电路相连接,所述晶片d接收待测工件反射回来的脉冲波,所述晶片d表不与第一晶片斜向相邻的晶片; 第五步,所述第一晶片完成工作后,所述第二晶片重复第一步至第四步的过程,直至晶片N完成依次完成第一步至第四步的过程。
4.根据权利要求1所述的一种提升面阵探头分辨率的检测方法,其特征在于,所述芯片为可编程芯片。
5.根据权利要求1-5中任一项所述的一种提升面阵探头分辨率的检测方法,其特征在于,所述N个晶片为52个晶片。
6.根据权利要求1所述的一种提升面阵探头分辨率的检测方法,其特征在于,所述步骤二中的m 等于4。
【文档编号】G01N29/04GK104034802SQ201410243103
【公开日】2014年9月10日 申请日期:2014年6月3日 优先权日:2014年6月3日
【发明者】张瑞 申请人:艾因蒂克检测科技(上海)有限公司