רÀûÃû³Æ£ºÒ»ÖÖ»ùÓÚmcaµÄsarͼÏñÒÖÔë·½·¨
¼¼ÊõÁìÓò£º
±¾·¢Ã÷Éæ¼°Ò»ÖÖ»ùÓÚMCAµÄSARͼÏñÒÖÔë·½·¨£¬Éæ¼°Ò»ÖÖ»ùÓÚÐÎ̬³É·Ö·ÖÎöµÄSAR ͼÏñÒÖÔë·½·¨¡£
±³¾°¼¼Êõ£º
ÓÉÓÚ²ÉÓÃÏà¸É΢²¨½øÐÐÕÕÉäµÄ³ÉÏñ·½Ê½£¬ºÏ³É¿×¾¶À×´ï(Synthetic Aperture Radar, SAR)ͼÏñ²»¿É±ÜÃâµØÊܵ½Á˰ߵãÔëÉùµÄÓ°Ïì¡£°ßµãÔëÉùµÄ´æÔÚÒþ²ØÁËͼÏñµÄϸ½Ú£¬ ½µµÍÁËͼÏñµÄ»Ò¶È·Ö±æÂÊ£¬ÑÏÖØÓ°ÏìÁË SARͼÏñµÄÕýȷʶ±ðºÍ½âÒë¡£Òò´Ë£¬ÒÖÖÆSARͼÏñµÄ Ïà¸É°ßÔëÉù¾ßÓзdz£ÖØÒªµÄÒâÒå¡£ÔçÆÚµÄSARͼÏñÒÖÔë·½·¨Ö÷ÒªÊÇ»ùÓÚ¿ÕÓòºÍÂ˲¨µÄ·½·¨£¬µ«ÕâЩ·½·¨ÔڽϺÃÒÖÖÆ Ïà¸É°ßÔëÉùµÄͬʱËð»µÁËÔͼµÄϸ½ÚÌØÕ÷¡£Òò´Ë£¬wavelet±ä»»±»ÓÃÀ´¿Ë·þÕâЩȱµã£¬µ« ×îÐÂÑо¿±íÃ÷£¬ÓÉÓÚС²¨»ù¸÷ÏòͬÐÔµÄÌØµã£¬ËüÖ»ÄÜ·´Ó³ÆæÒì¡°µã¡±µÄλÖúÍÌØÐÔ£¬¶øÄÑÒÔ ±í´ï¸ü¸ßά(ÈçÏß)µÄÌØÕ÷¡£Ëæ×Ŷà³ß¶È·ÖÎöµÄ·¢Õ¹£¬curvelet±ä»»ÓÉÓÚÆä¸ß¶È¸÷ÏòÒì ÐÔµÄÌØµã£¬¿ÉÓÃÓÚͼÏñ±ßÔµµÄ¸ßЧ±íʾ£¬µ«½«ÆäÓÃÓÚÒÖÔëµÄͬʱ»á²úÉú»®ºÛºÍαGibbsЧ Ó¦¡£Òò´Ë£¬ÓÐѧÕßÌá³ö½«waveletºÍcurveletÏà½áºÏ½øÐÐÒÖÔ룬¸Ã·½·¨Óëµ¥¶À²ÉÓÃwavelet ºÍcurvelet·½·¨Ïà±ÈÓÐÒ»¶¨µÄ¸Ä½ø£¬µ«Ð§¹û¸ÄÉÆ²¢²»Ã÷ÏÔ¡£ÎÄÏס°Redundant Multiscale Transforms and Their Application for Morphological Component Seperation, Advances in Imaging and Electron Physics, 2004,132 :287_348. ¡±¹«¿ªÁËÒ»ÖÖ³ÆÎªÐÎ̬ ³É·Ö·ÖÎö(Morphological Component Analysis, MCA)µÄͼÏñ·Ö½â·½·¨¡£MCA¼Ù¶¨Í¼ÏñÖÐ µÄÿÖÖÐÎ̬³É·Ö¶¼¿ÉÓÉ×ÖµäÖжÔÓ¦µÄÔ×ÓÀ´Ï¡Êè±íʾ£¬Ã¿¸öÔ×ÓÖ»ÄÜÏ¡Êè±íʾÆäÖÐÒ»ÖÖ³É ·Ö£¬¶ø¶ÔÓÚÆäËüÐÎ̬³É·ÖÔò²»ÄÜÏ¡Êè±íʾ£¬Òò´ËÖ»ÒªËùÑ¡Ô×Ó¼ä×ã¹»µØ»¥²»Ïà¸É£¬¾Í¿ÉÒԵà ³öÒ»¸ö³É¹¦µÄ·ÖÀë¡£Òò´Ë£¬¶ÔÓÚº¬ÔëͼÏñ£¬¸Ã·½·¨Äܽ«ÔëÉù±£ÁôÔÚ²ÐÓàͼÏñÖУ¬´Ó¶ø´ïµ½ÒÖ ÔëµÄÄ¿µÄ¡£¸Ã·½·¨ËäÈ»ÒÑÔÚ×ÔȻͼÏñµÄ·ÖÀëºÍÒÖÔëÖÐÈ¡µÃÁ˳ɹ¦£¬µ«»¹Î´±»Ó¦ÓÃÓÚSARͼ ÏñµÄÒÖÔëÖС£×ÛÉÏËùÊö£¬ÏÖÓеÄSARͼÏñÒÖÔë·½·¨²»ÄÜͬʱȡµÃ½ÏºÃµÄÔëÉùÒÖÖÆºÍ±ßÔµ±£³ÖЧ^ ¦Ï
·¢Ã÷ÄÚÈÝ
Òª½â¾öµÄ¼¼ÊõÎÊÌâΪÁ˱ÜÃâÏÖÓм¼ÊõµÄ²»×ãÖ®´¦£¬±¾·¢Ã÷Ìá³öÒ»ÖÖ»ùÓÚMCAµÄSARͼÏñÒÖÔë·½·¨£¬¿Ë ·þÏÖÓм¼Êõ·½·¨²»ÄÜͬʱȡµÃ½ÏºÃµÄÔëÉùÒÖÖÆºÍ±ßÔµ±£³ÖЧ¹ûµÄ²»×ã¡£±¾·¢Ã÷µÄ˼ÏëÔÚÓÚMCAÊÇStarckµÈÈË×î½üÐÂÌá³öµÄÒ»ÖÖ»ùÓÚÏ¡Êè·Ö½âºÍ±íʾµÄ ÐźŷÖÀë·½·¨¡£¸Ã·½·¨Ä¿Ç°ÒÑÔÚ×ÔȻͼÏñµÄ·ÖÀëºÍÒÖÔëÖÐÈ¡µÃÁ˳õ²½³É¹¦£¬È»¶øÏÖÓÐÕâ·½ ÃæµÄÑо¿Ö÷Òª¼¯ÖÐÓÚº¬¸ß˹°×ÔëÉùµÄͼÏñ£¬¶ÔÓÚÆäËûÀàÐÍÔëÉùµÄͼÏñ²¢Î´¿ªÊ¼Ñо¿¡£µ«³Ë ÐÔÔëÉùµÈÒ²ÊÇÒýÆðͼÏñÍË»¯µÄ³£¼ûÔëÉù£¬ÈçSARͼÏñÖдæÔڵİߵãÔëÉùÑÏÖØÓ°ÏìÁËͼÏñµÄ ½âÒë¡£Òò´Ë£¬ÔÚÑо¿¸ß˹°×ÔëÉùµÄ»ù´¡ÉÏ£¬±¾·¢Ã÷½«MCA·½·¨Ó¦ÓÃÓÚSARͼÏñÖгËÐÔÔëÉùµÄÒÖÖÆ¡£ÓÉÓÚͼÏñÖÐÒ»°ã°üº¬±ßÔµ/ÂÖÀªºÍÎÆÀíÁ½ÖÖÐÎ̬³É·Ö£¬¸ù¾ÝcurveletÁ¼ºÃµÄ±ßÔµ/ ÂÖÀª±íÊ¾ÌØÐԺ;ֲ¿ÀëÉ¢ÓàÏұ任(Local Discrete Cosine Transform, LDCT)Á¼ºÃµÄ¾Ö ²¿ÎÆÀí±í´ïÄÜÁ¦£¬±¾·¢Ã÷ÔÚMCAµÄͳһ¿ò¼ÜÏ£¬ÀûÓÃcurveletºÍLDCTµÄ×Öµä×éºÏ£¬´Ó¶ø´ï µ½¶ÔSARͼÏñ½øÐÐÒÖÔëµÄÄ¿µÄ¡£¼¼Êõ·½°¸Ò»ÖÖ»ùÓÚMCAµÄSARͼÏñÒÖÔë·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ²½ÖèÈçϲ½Öè1 ½«SARͼÏñµÄ»Ò¶ÈÖµ¾ØÕó¾µÏñÀ©Õ¹ÖÁ±ß³¤Îª2µÄÖ¸Êý´Î·½µÄ·½Õó£¬ËùÊöµÄ ¾µÏñÀ©Õ¹ÎªÊ×ÏȽ«ÔSARͼÏñ¸´ÖƵ½Ä£°å·½ÕóµÄÖÐÑ룬Ȼºó½«ÔSARͼÏñÃæÏòÄ£°å·½ÕóµÄ Ëĸö±ß½øÐжԳÆÀ©Õ¹£»²½Öè2 ¶Ô²½Öè1ÖÐÀ©Õ¹ºó·½ÕóÈ¡¶ÔÊýµÃµ½¶ÔÊýͼÏñ£»²½Öè3 Ñ¡ÔñcurveletºÍLDCTµÄ×Öµä×éºÏ£¬·Ö±ð¶Ô¶ÔÊýͼÏñ½øÐÐcurveletºÍLDCT ±ä»»£¬µÃµ½¶ÔÓ¦µÄÁ½¸ö±ä»»ÏµÊý¾ØÕó£»²½Öè4 ¶ÔµÃµ½µÄÁ½¸ö±ä»»ÏµÊý¾ØÕó·Ö±ð½øÐÐÓ²ãÐÖµ´¦Àí£¬µÃµ½Á½¸öÓ²ãÐÖµ´¦Àí ϵÊý¾ØÕó£»ËùÊöÓ²ãÐÖµ´¦ÀíÖеÄãÐֵѡȡ·Ö±ðΪcurveletÖÐãÐֵѡΪ¦Ë*¦¥>£¬ÆäÖÐ1¡¢±í ʾcurvelet±ä»»µÚj¸ö³ß¶ÈϵÚw¸ö·½ÏòµÄϵÊý¾ØÕóµÄ¶þ·¶Êý£¬j ^ 2 £» ¦ËΪÁ½¸ö±ä»»Ïµ Êý¾ØÕóÖеÄ×î´ó·ùÖµ£¬LDCTÖÐãÐֵѡΪ¦Ë £»²½Öè5 ¶ÔÁ½¸öÓ²ãÐÖµ´¦ÀíϵÊý¾ØÕó·Ö±ð½øÐÐÄæ±ä»»£¬ÇÒ¶ÔcurveletÄæ±ä»»ºóµÄ ¾ØÕó²ÉÓÃHaarС²¨ÈíãÐÖµ·½·¨½øÐÐÈ«±ä²îTotal Variation, TV¹æÔò»¯£¬µÃµ½Á½¸öÔ×Ó±í ʾµÄ¶ÔӦͼÏñ³É·Ö¾ØÕó£»²½Öè6 ¶ÔÁ½¸öÔ×Ó±íʾµÄ¶ÔӦͼÏñ³É·Ö¾ØÕóÏà¼ÓµÃµ½µÄºÍ¾ØÕóºó½øÐÐÖ¸Êý±ä »»£¬µÃµ½Ö¸Êý±ä»»Í¼Ïñ£»²½Öè7 ¶ÔÖ¸Êý±ä»»Í¼Ïñ°´ÕÕ¾µÏñÀ©Õ¹Ê±ÔʼͼÏñÔÚÄ£°å·½ÕóÖеÄλÖúʹóС½ø Ðвüô£¬µÃµ½ÒÖÔëºóµÄSARͼÏñ¡£Ñ»·²½Öè3 ²½Öè5N´Î£¬NΪ10-100 £»Ñ»·Ê±²½Öè3ÖжԶÔÊýͼÏñ¾ØÕóÓëÉÏÒ» ´ÎÑ»·ËùµÃLDCTÔ×Ó±íʾµÄͼÏñ³É·Ö¾ØÕóÖ®²î½øÐÐcurvelet±ä»»£¬¶ø¶Ô¶ÔÊýͼÏñ¾ØÕóÓë ÉÏÒ»´ÎÑ»·ËùµÃcurveletÔ×Ó±íʾµÄͼÏñ³É·Ö¾ØÕóÖ®²î½øÐÐLDCT±ä»»£»²½Öè4ÖжԦ˰´
ÕÕ¹«Ê½
½øÐиüУ¬ÆäÖÐt±íʾµ±Ç°Ñ»·´ÎÊý£¬¦ÓÈ¡3µ½5Ö®¼äµÄ³£Êý£¬¦ÒΪ
ÔëÉù±ê×¼²î£¬¶Ô¶ÔÊýͼÏñ°´¹«Ê½¦Ò = MAD/0. 6745¹À¼ÆµÃµ½£¬ÆäÖÐMADÊǶԶÔÊýͼÏñ½øÐÐС ²¨±ä»»ºóµÃµ½µÄHH1×Ó´øÐ¡²¨ÏµÊý·ù¶ÈµÄÖÐÖµ¡£ÓÐÒæÐ§¹û±¾·¢Ã÷Ìá³öµÄ»ùÓÚMCAµÄSARͼÏñÒÖÔë·½·¨£¬ÓÐÒæÐ§¹ûÊÇ»ùÓÚMCA¸ù¾ÝͼÏñÐÎ̬ ³É·Ö½øÐзÖÀëµÄ˼Ï룬²ÉÓÃcurveletºÍLDCTµÄ×Öµä×éºÏ£¬³ä·ÖÀûÓÃÁË curvelet¶Ô±ßÔµ/ÂÖ ÀªµÄÁ¼ºÃ±íÊ¾ÌØÐÔºÍLDCT¶ÔÎÆÀíµÄÁ¼ºÃ±í´ïÄÜÁ¦£¬¾¡¿ÉÄܺõØÃèÊöÁËͼÏñµÄÓÐЧÐÅÏ¢£¬¶ø ½«ÔëÉùÁôÔÚÁ˲ÐÓàͼÏñÖУ¬´Ó¶ø´ïµ½ÔÚÓÐЧÒÖÖÆÔëÉùµÄͬʱ½ÏºÃµØ±£³ÖÔͼ±ßÔµµÄÄ¿µÄ¡£
ͼ1 ÊDZ¾·¢Ã÷»ùÓÚÐÎ̬³É·Ö·ÖÎöµÄSARͼÏñÒÖÔë·½·¨µÄÁ÷³Ìͼ
¾ßÌåʵʩÀý·½Ê½ÏÖ½áºÏʵʩÀý¡¢¸½Í¼¶Ô±¾·¢Ã÷×÷½øÒ»²½ÃèÊö1)½«ÊäÈëµÄSARͼÏñ»Ò¶ÈÖµ¾ØÕó¾µÏñÀ©Õ¹ÖÁ±ß³¤Îª2µÄÖ¸Êý´Î·½µÄ·½Õ󣬼ÇΪS¡£ ÈçÊäÈëͼÏñ´óСΪ300X300£¬ÔòÀ©Õ¹ºóͼÏñS´óСΪ512X512£¬ÏȽ«ÔͼÏñ¸´ÖƵ½Ä£°å·½ ÕóµÄÖÐÑ룬Ȼºó¶ÔÆäÏòËÄÖÜ(512-300)/2 = 106¸öÏñËØ·Ö±ð½øÐжԳÆÀ©Õ¹¡£2)¶ÔSÈ¡¶ÔÊý£¬Ê¹µÃSARͼÏñÖгËÐÔµÄÏà¸É°ßÔëÉùת±äΪ½üËÆµÄ¸ß˹¼ÓÐÔÔëÉù£¬µÃ µ½¶ÔÊýͼÏñS'¡£3)Ñ¡ÔñcurveletºÍLDCTµÄ×Öµä×éºÏ£¬·Ö±ð¶ÔS'½øÐÐcurveletºÍLDCT±ä»»£¬µÃ µ½Ce (curvelet¶ÔÓ¦µÄ±ä»»ÏµÊý¾ØÕó)ºÍCjLDCT¶ÔÓ¦µÄ±ä»»ÏµÊý¾ØÕó)¡£4)¶Ô·Ö±ð½øÐÐÓ²ãÐÖµ´¦Àí£¬µÃµ½Cc' (CcÓ²ãÐÖµ´¦ÀíϵÊý¾ØÕó)ºÍ(V (Cl Ó²ãÐÖµ´¦ÀíϵÊý¾ØÕó)£»ËùÊöÓ²ãÐÖµ´¦ÀíÖеÄãÐֵѡȡ·Ö±ðΪ=CurveletÖÐãÐֵѡΪ Èë*Ejw£¬ÆäÖÐEjw±íʾcurvelet±ä»»µÚj¸ö³ß¶ÈϵÚw¸ö·½ÏòµÄϵÊý¾ØÕóµÄ¶þ·¶Êý£¬jáê2 £» ¦ËΪÁ½¸ö±ä»»ÏµÊý¾ØÕóÖеÄ×î´ó·ùÖµ£¬LDCTÖÐãÐֵѡΪ¦Ë¡£5)¶ÔCe'ºÍ(V·Ö±ð½øÐÐÄæ±ä»»£¬ÇÒ¶ÔcurveletÄæ±ä»»ºóµÄ¾ØÕó²ÉÓÃHaarС²¨ ÈíãÐÖµ·½·¨½øÐÐÈ«±ä²îTotal Variation£¬TV¹æÔò»¯£¬µÃµ½Á½¸öÔ×Ó±íʾµÄ¶ÔӦͼÏñ³É·Ö¾Ø ÕóScºÍSl¡£6)¶Ô½øÐÐÖ¸Êý±ä»»£¬µÃµ½Ö¸Êý±ä»»Í¼ÏñSd¡£7)¶ÔSd(512X512)°´ÕÕ¾µÏñÀ©Õ¹Ê±ÔʼͼÏñ(300X300)ÔÚÄ£°å·½ÕóÖеÄλÖýø Ðвüô£¬µÃµ½ÒÖÔëºóµÄSARͼÏñ¡£±¾ÊµÊ©ÀýÖУ¬ÎªÁË´ïµ½¸üºÃµÄЧ¹û£¬½«²½Öè3) ²½Öè5)Ñ»·10´Î¡£Ñ»·Ê±²½Öè 3ÖжÔS' -S¹ã1½øÐÐcurvelet±ä»»£¬¶ø¶ÔS' -S¹ã1½øÐÐLDCT±ä»»£¬t±íʾµ±Ç°Ñ»·´ÎÊý£»
²½Öè4ÖжԦ˰´ÕÕ¹«Ê½
½øÐиüУ¬ÆäÖÐt±íʾµ±Ç°Ñ»·´ÎÊý£¬¦ÓÈ¡3µ½5
Ö®¼äµÄ³£Êý£¬¦ÒΪÔëÉù±ê×¼²î£¬¶Ô¶ÔÊýͼÏñ°´¹«Ê½¦Ï = MAD/0. 6745¹À¼ÆµÃµ½£¬ÆäÖÐMADÊÇ ¶Ô¶ÔÊýͼÏñ½øÐÐС²¨±ä»»ºóµÃµ½µÄHH1×Ó´øÐ¡²¨ÏµÊý·ù¶ÈµÄÖÐÖµ¡£
ȨÀûÒªÇó
Ò»ÖÖ»ùÓÚMCAµÄSARͼÏñÒÖÔë·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ²½ÖèÈçϲ½Öè1½«SARͼÏñµÄ»Ò¶ÈÖµ¾ØÕó¾µÏñÀ©Õ¹ÖÁ±ß³¤Îª2µÄÖ¸Êý´Î·½µÄ·½Õó£¬ËùÊöµÄ¾µÏñÀ©Õ¹ÎªÊ×ÏȽ«ÔSARͼÏñ¸´ÖƵ½Ä£°å·½ÕóµÄÖÐÑ룬Ȼºó½«ÔSARͼÏñÃæÏòÄ£°å·½ÕóµÄËĸö±ß½øÐжԳÆÀ©Õ¹£»²½Öè2¶Ô²½Öè1ÖÐÀ©Õ¹ºó·½ÕóÈ¡¶ÔÊýµÃµ½¶ÔÊýͼÏñ£»²½Öè3Ñ¡ÔñcurveletºÍLDCTµÄ×Öµä×éºÏ£¬·Ö±ð¶Ô¶ÔÊýͼÏñ½øÐÐcurveletºÍLDCT±ä»»£¬µÃµ½¶ÔÓ¦µÄÁ½¸ö±ä»»ÏµÊý¾ØÕó£»²½Öè4¶ÔµÃµ½µÄÁ½¸ö±ä»»ÏµÊý¾ØÕó·Ö±ð½øÐÐÓ²ãÐÖµ´¦Àí£¬µÃµ½Á½¸öÓ²ãÐÖµ´¦ÀíϵÊý¾ØÕó£»ËùÊöÓ²ãÐÖµ´¦ÀíÖеÄãÐֵѡȡ·Ö±ðΪcurveletÖÐãÐֵѡΪ¦Ë*Ejw£¬ÆäÖÐEjw±íʾcurvelet±ä»»µÚj¸ö³ß¶ÈϵÚw¸ö·½ÏòµÄϵÊý¾ØÕóµÄ¶þ·¶Êý£¬j¡Ý2£»¦ËΪÁ½¸ö±ä»»ÏµÊý¾ØÕóÖеÄ×î´ó·ùÖµ£¬LDCTÖÐãÐֵѡΪ¦Ë£»²½Öè5¶ÔÁ½¸öÓ²ãÐÖµ´¦ÀíϵÊý¾ØÕó·Ö±ð½øÐÐÄæ±ä»»£¬ÇÒ¶ÔcurveletÄæ±ä»»ºóµÄ¾ØÕó²ÉÓÃHaarС²¨ÈíãÐÖµ·½·¨½øÐÐÈ«±ä²îTotal Variation£¬TV¹æÔò»¯£¬µÃµ½Á½¸öÔ×Ó±íʾµÄ¶ÔӦͼÏñ³É·Ö¾ØÕó£»²½Öè6¶ÔÁ½¸öÔ×Ó±íʾµÄ¶ÔӦͼÏñ³É·Ö¾ØÕóÏà¼ÓµÃµ½µÄºÍ¾ØÕóºó½øÐÐÖ¸Êý±ä»»£¬µÃµ½Ö¸Êý±ä»»Í¼Ïñ£»²½Öè7¶ÔÖ¸Êý±ä»»Í¼Ïñ°´ÕÕ¾µÏñÀ©Õ¹Ê±ÔʼͼÏñÔÚÄ£°å·½ÕóÖеÄλÖúʹóС½øÐвüô£¬µÃµ½ÒÖÔëºóµÄSARͼÏñ¡£
2.¸ù¾ÝȨÀûÒªÇó1ËùÊöµÄ»ùÓÚMCAµÄSARͼÏñÒÖÔë·½·¨£¬ÆäÌØÕ÷ÔÚÓÚÑ»·²½Öè3 ²½ Öè5N´Î£¬NΪ10-100 £»Ñ»·Ê±²½Öè3ÖжԶÔÊýͼÏñ¾ØÕóÓëÉÏÒ»´ÎÑ»·ËùµÃLDCTÔ×Ó±íʾ µÄͼÏñ³É·Ö¾ØÕóÖ®²î½øÐÐcurvelet±ä»»£¬¶ø¶Ô¶ÔÊýͼÏñ¾ØÕóÓëÉÏÒ»´ÎÑ»·ËùµÃcurveletÔ×Ó±íʾµÄͼÏñ³É·Ö¾ØÕóÖ®²î½øÐÐLDCT±ä»»£»²½Öè4ÖжԦ˰´ÕÕ¹«Ê½Òå¶þ£»^1/¡^^½øÐиüУ¬ÆäÖÐt±íʾµ±Ç°Ñ»·´ÎÊý£¬¦ÓÈ¡3µ½5Ö®¼äµÄ³£Êý£¬¦ÒΪÔëÉù±ê×¼²î£¬¶Ô¶ÔÊýͼÏñ °´¹«Ê½¦Ò = MAD/0. 6745¹À¼ÆµÃµ½£¬ÆäÖÐMADÊǶԶÔÊýͼÏñ½øÐÐС²¨±ä»»ºóµÃµ½µÄHH1×Ó ´øÐ¡²¨ÏµÊý·ù¶ÈµÄÖÐÖµ¡£
È«ÎÄÕªÒª
±¾·¢Ã÷Éæ¼°Ò»ÖÖ»ùÓÚMCAµÄSARͼÏñÒÖÔë·½·¨£¬¼¼ÊõÌØÕ÷ÔÚÓÚ½«MCA·½·¨Ó¦ÓÃÓÚSARͼÏñÖгËÐÔÔëÉùµÄÒÖÖÆ¡£ÓÉÓÚͼÏñÖÐÒ»°ã°üº¬±ßÔµ/ÂÖÀªºÍÎÆÀíÁ½ÖÖÐÎ̬³É·Ö£¬¸ù¾ÝcurveletÁ¼ºÃµÄ±ßÔµ/ÂÖÀª±íÊ¾ÌØÐԺ;ֲ¿ÀëÉ¢ÓàÏұ任(Local DiscreteCosine Transform£¬LDCT)Á¼ºÃµÄ¾Ö²¿ÎÆÀí±í´ïÄÜÁ¦£¬±¾·¢Ã÷ÔÚMCAµÄͳһ¿ò¼ÜÏ£¬ÀûÓÃcurveletºÍLDCTµÄ×Öµä×éºÏ£¬´Ó¶ø´ïµ½¶ÔSARͼÏñ½øÐÐÒÖÔëµÄÄ¿µÄ¡£Òò´Ë¶ÔÓÚº¬ÔëͼÏñ£¬¸Ã·½·¨Äܽ«Í¼ÏñµÄÓÐЧ³É·Ö·ÖÀë³öÀ´¶ø½«ÔëÉù±£ÁôÔÚ²ÐÓàͼÏñÖУ¬´Ó¶ø´ïµ½ÒÖÔëµÄÄ¿µÄ¡£ÔÚ·ÂÕæºÍÕæÊµSARͼÏñÉϵÄʵÑé½á¹û¾ù±íÃ÷£¬±¾·¢Ã÷Ó봫ͳµÄ»ùÓÚwaveletºÍcurveletµÄ·½·¨Ïà±ÈÄܵõ½½ÏºÃµÄÒÖÔëЧ¹û¡£
Îĵµ±àºÅG01S13/90GK101908206SQ201010216990
¹«¿ªÈÕ2010Äê12ÔÂ8ÈÕ ÉêÇëÈÕÆÚ2010Äê7ÔÂ1ÈÕ ÓÅÏÈȨÈÕ2010Äê7ÔÂ1ÈÕ
·¢Ã÷ÕßÕÅÑÞÄþ, ÀîÓ³, ¹¨ºìÀö ÉêÇëÈË:Î÷±±¹¤Òµ´óѧ