亚星游戏官网-www.yaxin868.com

    山东亚星游戏官网机床有限公司铣床官方网站今天是:2025-05-08切换城市[全国]-网站地图
    推荐产品 :
    推荐新闻
    技术文章当前位置:技术文章>

    一种电容式微机电超声传感器及其制作方法

    时间:2025-05-07    作者: 管理员

    专利名称:一种电容式微机电超声传感器及其制作方法
    技术领域:
    本发明涉及电子元器件领域,具体地,涉及一种电容式微机电超声传感器及其制作方法。
    背景技术:
    在电子元器件领域,电容式微机电超声传感器,是一种有着广泛用途的静电传感器。超声传感器可以在液体、固体和气体等多种介质里工作。超声传感器已经应用在医药诊断和治疗,无损伤材料测试,声纳,通讯,接近传感器,流量测量,实时工艺控制,以及超声显微镜等领域里。
    跟广泛应用的用压电陶瓷(即PZT)技术做成的传感器相比,电容式微机电超声传感器在制作工艺、频谱带宽以及工作温度等方面都有很大的优势。例如,用传统的制作工艺做传感器阵列,需要分别切割每个阵元,所以耗时耗力、成本高;而且,切割方法精度有限, 所以做高频、二维和一些特殊几何形状的传感器阵列尤其困难。
    电容式微机电超声传感器是用半导体工艺制成,所以很多传感器可以在一起成批制造。半导体制作工艺的精度足够满足电容式微机电超声传感器的需求。电容式微机电超声传感器阵列可以做到精度高、且低成本,电容式微机电超声传感器在所设计的工作频率范围里,其阻抗比压电陶瓷传感器的阻抗低很多。所以电容式微机电超声传感器在医药成像应用中不需要匹配层和较宽的带宽。电容式微机电超声传感器是由半导体材料制成,所以它比压电陶瓷传感器耐高温。
    电容式微机电超声传感器的基本结构是一个固定下电极和活动上电极的平行板电容,活动上电极依附在一个可变形的薄膜上用来传送超声波到临近的介质和从临近的介质中接收(RX)超声波,直流偏置电压可以加在传感器两电极之间用来设置薄膜到一个优化位置以得到最佳的灵敏度和带宽。发射(TX)时,一个交流电压加在传感器上,相应的静电力移动薄膜以传送超声能量到临近的介质;接收(RX)时,介质中的超声波引起传感器薄膜震动,从而改变传感器的电容;电容变化能用相应的接收电路探测到。
    两种有代表性的电容式微机电超声传感器,分别是可变形薄膜电容式微机电超声传感器(flexible membrane CMUT)和最近发明的弹簧坎入式电容式微机电超声传感器 (embedded-spring CMUT,简称ESCMUT)。图I是一个可变形薄膜电容式微机电超声传感器的截面不意图以及一个传感器基兀100的放大图。传感器100有一个固定的包括一个下电极(第一电极)160的衬(或基)底120,一个通过薄膜支撑130和衬底120相连的可变形薄膜110,一个可移动的上电极(第二电极)150附着在薄膜110上或中。薄膜110本身也可以作为上电极。薄膜支撑130在可变形薄膜110和下电极160之间形成一个传感器空间 170 (传感器空间可以被封闭起来)。一个介电绝缘层140可以选择性的放在两电极之间。 此电容式微机电超声传感器可以用来接收和发射超声波。当一个所需电信号加在上下电极之间时,可移动(或可变形)的薄膜110和上电极(第二电极)150在传感空间170里的电场作用下移动(或变形),将超声波传输出去。当有一个超声波作用在可移动(或可变形)的薄膜110和上电极(第二电极)150上时,他们会根据所受的超声波移动(或变形),从而改变传感空间的大小(等效于改变传感器等效电容值)。如果在两个电极之间有一个偏值电信号 (可以是直流或交流信号),此传感空间(或传感器电容值)的改变可以转换成电信号并被相应的电路探测到。
    图2是一个弹簧坎入式电容式微机电超声传感器的截面示意图以及一个传感器基元200的放大图。此弹簧坎入式电容式微机电超声传感器两个PCT国际专利申请(No. PCT/IB2006/051568 and No. PCT/IB2006/05159,申请时间是 2006 年 5 月 18 号;两个专利的标题都是MICRO-ELECTRO-MECHANICAL TRANSDUCERS)里有着详细的描述。此传感器200 包括一个衬(或基)底230,一个弹簧固定物231,一个弹簧层220被弹簧固定物231支撑在衬(或基)底230上。一个表面薄板210通过一个弹簧薄板连接物240和弹簧层220相连。 一个上电极(第一电极)250依附在表面薄板210上。表面薄板210本身也可以是上电极的一部分。在上电极和下电极(第二电极)260之间是传感空间270。传感器可以由一个或多个基元200组成。传感器200可以有一个或多个被弹簧层支撑的薄板。一个介电绝缘层 280可以选择性的放在两电极之间。此电容式微机电超声传感器可以用来接收和发射超声波。当一个所需电信号加在上下电极之间时,可移动(或可变形)的薄板210和上电极(第二电极)250连接在可变形的弹簧层220上并在传感空间270里的电场作用下移动(或变形), 将超声波传输出去。当有一个超声波作用在连接在可变形的弹簧层220上的可移动(或可变形)的薄板210和上电极(第二电极)250上时,他们会根据所受的超声波移动(或变形), 从而改变传感空间的大小(等效于改变传感器等效电容值)。如果在两个电极之间有一个偏值电信号(可以是直流或交流信号),此传感空间(或传感器电容值)的改变可以转换成电信号并被相应的电路探测到。
    无论是那种传感器,等效传感空间决定其等效电容值,从而对传感器的性能(如传感效应)有决定性的作用。无论是那种电容式微机电超声传感器,一个完整的电容式微机电超声传感器或传感器阵元都是由多个像图I和图2中的基元组成。电容式微机电超声传感器的基元一般来说都做成完全一样的,所以整个传感器阵元表面的传感效应(transducing efficiency)都是一样的。上述两种微机电超声传感器,都有一个相同的机构(上下电极和其间的传感空间,可参见图3)。
    但是,在超声成像时,为了得到更好的发射波束,希望传感器或传感器阵元的传感效应不是每处都一样,而是有一定的分布。这种设计很难用传统的压电陶瓷技术在一个传感器阵元上实现。因此现有的基于压电陶瓷技术的系统,只好通过使用更复杂的传感器列阵和控制电路和系统,来实现孔径孔障从而优化成像。例如,为了用孔径孔障提高2维超声图像的质量,代替一般的ID列阵探头,人们使用I. 5D、1. 75D、甚至2D的列阵探头,这极大地增加了探头和系统的复杂性和成本,因此只有较少的高端超声诊断系统上才有此功能。
    而如果在ID列阵探头的阵元中实现了设计要求的传感效应分布,那么在几乎不增加任何探头和系统的复杂性和成本的情况下实现了孔径孔障从而优化成像。如果在几乎不增加任何探头和系统的复杂性和成本的情况下实现了孔径孔障从而优化成像,不管是高端系统还是低端系统都能受益,从而可以提高医用超声系统的整体成像质量,对帮助提高医疗诊断水平会有很大的作用。
    在实现本发明的过程中,发明人发现现有技术中至少存在成像质量差、制作复杂、尺寸不够精确与成本闻等缺陷。发明内容
    本发明的目的在于,针对上述超声传感器效应每处都一样的问题,提出一种电容式微机电超声传感器,以实现成像质量高、制作方便、尺寸精确与成本低的优点。
    为实现上述目的,本发明米用的第一技术方案是一种电容式微机电超声传感器, 包括至少两个基元,每个基元具有上电极和下电极,在每个基元的上、下电极之间具有一个等效传感空间;其中至少有两个基元的等效传感空间不一样。
    进一步地,每个基元具有一个均匀的等效传感空间;其中至少有两个基元的等效传感空间的高度不一样,形成超声传感器等效传感效应的不均匀分布。
    进一步地,每个基元的上、下电极均为平面电极,在上、下电极之间形成均匀等效传感空间。
    本发明米用的第二技术方案是一种电容式微机电超声传感器,包括至少两个基元,每个基元具有上电极和下电极,在每个基元的上、下电极之间具有一个等效传感空间; 其中至少有两个基元的等效传感空间不一样。
    进一步地,每个基元具有一个不均匀的等效传感空间;其中至少有两个基元的等效传感空间不均匀部分的相对比例不一样,形成超声传感器等效传感效应的不均匀分布。
    进一步地,每个基元的上、下电极之间形成不均匀等效传感空间;该不均匀的等效传感空间,包括至少两种不同的等效传感空间高度。
    进一步地,在每个基元的上、下电极中,包括一个平面电极与一个非平面电极;该非平面电极有至少两种不同空间高度,在上、下电极间形成不均匀等效传感空间。
    本发明采用的第三技术方案是一种电容式微机电超声传感器,包括至少两个基元,每个基元具有上电极和下电极,在每个基元的上、下电极之间具有一个等效传感空间; 其中至少有两个基元的等效传感空间不一样。
    进一步地,每个基元具有一个不均匀的等效传感空间;其中至少有两个基元的等效传感空间不均匀部分的相对比例不一样,形成超声传感器等效传感效应的不均匀分布。
    进一步地,每个基元的上、下两电极均为平面电极,在上、下两电极之间的传感空间中有一个不均匀的介质绝缘层;该介质绝缘层有至少两种不同厚度,形成超声传感器不均匀等效传感空间。
    本发明采用的第四技术方案是一种电容式微机电超声传感器,包括至少两个基元,每个基元具有上电极和下电极,在每个基元的上、下电极之间具有一个等效传感空间; 其中至少有两个基元的等效传感空间不一样。
    进一步地,在至少两个基元中,第一个基元相对位于传感器中间,第二个基元相对位于传感器边上;第一个基元的传感空间和第二个基元的传感空间不一样,且第一个基元的传感效应高于第二个基元的传感效应,形成超声传感器等效传感效应中间较高边上较低的不均匀分布。
    同时,本发明米用的第五技术方案是一种基于以上所述的电容式微机电超声传感器的制作方法,采用微机电制作工艺,制作具有不均匀传感效应的传感器,具体步骤如下6(1)由硅片作为传感器的下电极基片,在下电极基片上形成多个不同深度或宽度的凹处;(2)在下电极基片上,形成支撑物;此支撑物一般由氧化硅刻蚀而成;(3)在具有凹处的下电极基片或薄膜或薄板表面,生长一层绝缘层(如氧化硅),作为传感器两电极之间的绝缘保护层,此步为选项;(4)在支撑物上,形成一层薄膜或薄板;(5)在薄膜或薄板上,形成一个导电层(如金属沉积层),作为上电极。
    这里,使用可变形薄膜电容式微机电超声传感器(参见图I)来说明有传感器效应分布的电容式微机电超声传感器的制作方法;同样的制作方法,也可以用来制作有传感器效应分布的弹簧坎入式电容式微机电超声传感器(参见图2)、以及相似的其他电容式微机电超声传感器。
    进一步地,对于步骤(I)中在下电极基片上形成多个不同深度或宽度的凹处的制作方法,如果基片是硅片以及其他可以被氧化的材料,具体制作如下在下电极基片上生成一层氧化硅,再根据预设形状刻蚀成掉氧化硅;然后在整个下电极基片上生长一层氧化硅;因这一氧化层生长的厚度不均匀,从而在硅表面形成设计需要的凹处;或者,也可以用双层硅化物来形成凹处,具体如下在下电极基片上生成一层氧化硅,再在氧化硅上生成一层氮化硅,接着根据预设形状刻蚀掉氧化娃和氮化娃;然后在整个下电极基片上生长一层氧化娃;因这一氧化层生长的厚度不均匀,从而在硅表面形成设计需要的凹处。
    另外,也可将上述两种方法中在基片附着的氧化硅或氧化硅和氮化硅刻蚀掉。此制作方法使用的是氧化硅在不同表面状况下(例如在硅表面有不有扩散阻挡层diffusion barrier)的生长速度的差异来实现的。扩散阻挡层diffusion barrier在微机电或半导体工艺中多由氧化硅,氮化硅或两个材料层同时组成。
    以上各实施方式,是根据传感空间的等效几何形状,即上、下电极的表面形状以及在其表面存积的介质绝缘层的形状进行的说明。传感器的传感效应主要是被此传感空间决定的,因此通过改变传感器中不同位置的基元中的传感空间的等效几何形状来实现在传感器或传感器阵元中所需的传感效应分布。相对于用改变传感器薄膜的几何形状或大小来改变各个基元的传感器效应,这种做法能在改变传感基元的传感效应的同时仍能保持所有基元的频谱的一致性;而且,用传感空间来改变传感效应的传感器的微机电制作工艺可以和各处传感效应一样的传感器的制作工艺相仿,从而不增加制作工艺的工序和难度。
    通过上述各实施方式,可以使本发明达到以下有益效果⑴超声传感器的不均匀等效传感效应分布改善了发射波束,大大提高了成像质量; ⑵本发明适合微机电加工工艺特点,跟没有不均匀等效传感效应分布的传感器的制作工艺相比,不会增加制作工艺的难度;对于微机电加工工艺而言,在加工水平方向比垂直方向更容易实现多种不同的尺寸变化,从而较容易制作出需要的孔径孔障;⑶制作方便,制作工艺中尺寸控制精确,从而极大提高换能器的良率,且成本低; ⑷此发明中的有不均勻传感效应分布的电容式微机电超声传感器的操作方式跟一般的超声传感器一样,从而不需要使用更复杂的系统来实现孔径孔障,使简单的系统也能用传感器自身的孔径孔障来提高成像质量。
    本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
    下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。


    附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中图I是一个可变形薄膜电容式微机电超声传感器的截面示意图以及一个传感器基元 100的放大图;图2是一个弹簧坎入式电容式微机电超声传感器的截面示意图以及一个传感器基元 200的放大图;图3显示简化了的有均匀传感空间的电容式微机电超声传感器基元示意图;图4显示简化了的有不均匀传感空间的电容式微机电超声传感器基元示意图;图5显示简化了的有等效不均匀传感空间的电容式微机电超声传感器基元示意图;图6a、图6b和图6c显不了传感器的传感效应分布设计的例子;图7a和图7b显示传感器的传感效应均匀分布设计的例子及其波束分布;图8a和图Sb显示传感器的传感效应不均匀分布设计的例子及其波束分布;图9a_图9e显示简化了的有等效不均匀传感效应分布的电容式微机电超声传感器第一种例子示意图;图IOa-图IOe显示简化了的有等效不均匀传感效应分布的电容式微机电超声传感器第二种例子示意图;图Ila与图Ilb显示制作有等效不均匀传感效应分布的电容式微机电超声传感器(参见图9a_图9e)的流程例子不意图;图12a与图12b显示制作有等效不均匀传感效应分布的电容式微机电超声传感器(参见图IOa-图IOe)的流程例子不意图。
    上述有关附图的具体说明如下图I和图2都是已有微机电超声传感器的截面结构示意图,图I中的传感器的基本结构是一个传感空间170和上下电极150、160。上电极随着薄膜110的移动来接受和发射超声波。图2中的传感器的基本结构是一个传感空间270和上下电极250、260。上电极随着薄板210的移动来接受和发射超声波。弹簧薄板连接物240和弹簧层220用来保证薄板 210的上下移动。图中A为在CMUT列阵中的一个阵元,B、C为另一个CMUT阵元。
    为了更清楚简洁的描述此发明,可以用简化了的传感器基元300 (见图3)来代替图I和图2中以及其他相似的微机电超声传感器的传感器基元100、200。此简化了的基元 300只包括传感器最基本的构件一个上电极350 (即第二电极),下电极360 (即第一电极) 和传感空间370。
    如果在上下电极之间有介质绝缘层,其效果可以等效为相应的真空传感空间。因此这儿的传感空间370可以广义的理解为上下电极之间包括所有材料和效应的等效传感空间。
    图3中上下电极350和360都是平的,因此形成的等效传感空间高度均匀。由于可移动的电极350是一个四周固定的薄膜(或薄板),其位移在工作中不是均匀的。中心位置的位移最大,因此优化的等效传感空间应设计成相应不均匀的高度。图4是一个有不均匀等效传感空间的传感器基元400的例图。其不均匀等效传感空间470是由一个不平的电极460和另一个电极450来实现的。在这个具体的例子中,传感空间472部分高于传感空间471部分。图5是另外一个有不均匀等效传感空间的传感器基元500的例图。虽然电极 550和560表面是平的,但在传感空间570中有一个不均匀的介质绝缘层580,从而形成了一个不均匀的等效的传感空间570。在这个具体的例子中,介质绝缘层在572的部分比在 571的部分厚,从而使等效传感空间572部分低于等效传感空间571部分。
    理想情况下,传感器的传感效应分布应设计为高斯函数(Gaussian function)的形状(如图6a中的曲线610),这样传感效应分布的传感器的波束分布里没有旁瓣。如果没有办法将传感器的分布做成理想的高斯分布,我们可以设计多个阶梯分布(例如图6a中的曲线620和630)的传感效应来尽量接近理想的高斯分布。图6b显示的是一个均匀传感效应分布的传感器的波束分布例子。这个传感器的旁瓣只比主瓣少13dB。图6c显示的是一个有阶梯传感效应分布的传感器的波束分布例子。这个传感器的旁瓣只比主瓣少23dB。 所以,与一个均匀传感效应分布的传感器相比,一个适当设计有不均匀传感效应分布的传感器会大大提高成像质量。
    图I和图2是两种有均匀传感效应分布的传感器的例子。在这两个例子中,传感器都是由4个有同样(均匀)传感空间的基元100、200组成,因此其传感效应分布是均匀的 (如图6a)。下面的图7a和图8a是两个用多个有不同传感器空间的基元(例如7个基元) 来实现传感器的传感效应按设计要求不均匀分布的例子。其传感效应分布是不均匀(类似于图6b) o
    图7a和图8a是两个用传感器空间来实现传感器的传感效应按设计要求分布的例子。图7a和图8a是传感器截面结构图,图7b和图8b是相应的不均匀传感器效应分布图。 图7a中,各个基兀有和图3中的基兀一样的结构,它包括一个上电极750, —个下电极760 和均匀传感空间770。但传感空间的高度在不同的位置可以有所变化,从而使在不同位置的基元可以有不同的传感效应。例如,传感空间770、770A、770B安定770C依次变高,从而使传感效应依次变小(如图7b)。图8a中,各个基元有和图3或图4中的基元一样的结构,通过改变一个电极的形状或用不均匀的介电绝缘层,从而实现高度不均匀的等效传感空间。其等效结构包括一个上电极850,一个下电极860和不均匀传感空间870。在图8a的具体例子中,传感空间870有两个不同高度的部分,中间的传感空间高于其他部分。在图8的传感器中,各个传感器基元中的传感空间不均匀部分的相对比例可以根据设计有所变化。例如图8a中,不均匀传感空间中高的部分所占比例随着基元位置而不同,从而实现了如图Sb中的不均匀传感效应分布。同图7a的传感器相比,图8a中的传感器能够更容易地用微机电的制作工艺实现多种不同传感器基元的传感效应变化。这是因为微机电的制作工艺在水平方向比垂直方向更容易实现多种不同的尺寸变化。图7b和图Sb只是不均匀传感器效应分布的两个例子而已,其中的阶梯个数,相对高度和宽度可以根据具体的设计需要调整。
    图9a_图9e和图IOa-图IOe是两种微机电制作工艺流程的例子分别用于制作图7a和图8a中的有传感效应分布的传感器。图7a和图8a中的传感器也可以用其他方法制成。我们用可变形薄膜传感器(如图I)来描述相应的微机电制作工艺,同样的工艺也可以用于弹簧坎入式电容式微机电超声传感器(如图2)以及其他相似的微机电超声传感器的不均匀传感效应分布的传感空间的制作。
    图9a是第一种制作工艺例子的第一步在传感器下电极基片960上,形成不同深度的凹处970、970A和970B。如果下电极基片是由硅片等导体或半导体制成,其也可以作为传感器的下电极。
    图9b是第一种制作工艺例子的第二步在下电极基片上形成薄膜或薄板的支撑物920。此支撑物可以由在硅片上形成的氧化硅刻蚀而成。
    图9c是第一种制作工艺例子的第三步(此步为选项):可以在下电极基片上长一层介质绝缘层930 (例如氧化硅)作为传感器两电极之间的绝缘保护层。此绝缘保护层也可以长在薄膜或薄板上。
    图9d是第一种制作工艺例子的第四步将薄膜或薄板940附着在支撑物920上。 此步可以用硅片键合方法(wafer bonding)将SOI硅片键合到支撑物920上。SOI硅片上的背衬层和绝缘层可以被相继去掉然后得到单晶硅薄膜或薄板。
    图9e是第一种制作工艺例子的第五步一个导电层(如金属层)950可以沉积在薄膜或薄板940上作为上电极。这个金属层可以刻蚀成需要的形状。如果需要,薄膜或薄板 940也可以刻蚀成需要的形状。
    图IOa是第二种制作工艺例子的第一步在传感器下电极基片1060上,形成不同大小的凹处1070、1070A和1070B。如果下电极基片是由硅片等导体或半导体制成,其也可以作为传感器的下电极。
    图IOb是第二种制作工艺例子的第二步在下电极基片上形成薄膜或薄板的支撑物1020。此支撑物可以由在硅片上形成的氧化硅刻蚀而成。
    图IOc是第二种制作工艺例子的第三步(此步为选项)可以在下电极基片上长一层介质绝缘层1030 (例如氧化硅)作为传感器两电极之间的绝缘保护层。此绝缘保护层也可以长在薄膜或薄板上。
    图IOd是第二种制作工艺例子的第四步变形薄膜或薄板1040放在支撑物1020 上。此步可以用硅片键合方法(wafer bonding)将SOI硅片键合到支撑物1020上。SOI硅片上的背衬层和绝缘层可以被相继去掉然后得到单晶硅薄膜或薄板。
    图IOe是第二种制作工艺例子的第五步一个金属层1050可以沉积在薄膜或薄板 1040上作为上电极。这个金属层可以刻蚀成需要的形状。如果需要,薄膜或薄板1040也可以刻蚀成需要的形状图Ila-图IIb和图12a-图12b是两个用于实现图9a和图IOa中凹处的制作方法。同直接刻蚀的方法相比,图Ila-图Ilb和图12a-图12b中的制作方法更能得到精确的尺寸。 图Ila-图Ilb是用下电极基片在有氧化物覆盖的地方和没有有氧化物覆盖的地方氧化物生长速度的差异来得到下电极基片上的凹处。首先在下电极基片1160上生长(或覆盖)一层氧化物1180 (如图Ila)并刻蚀成需要的形状,然后再生长一层氧化物1181。通过氧化物在不同区域生长速度不同而得到在硅下电极基片上的凹处1170 (如图lib)。如果需要, 在接下来传感器的制作中可以完全去掉下电极基片上的所有氧化层1180/1181或将其刻蚀成需要的形状。图12a-图12b是用下电极基片在有氧化扩散阻挡层覆盖的地方和没有有氧化扩散阻挡层覆盖的地方氧化物生长速度的差异来得到下电极基片上的凹处。氧化扩散阻挡层可以用一层或多层材料层做成。在硅片下电极基片上用得最多的是氧化硅,氮化硅以及他们的双层结构。首先在下电极基片1260上生长(或覆盖)一层氧化物1280和氮化硅层1285 (如图12a)并刻蚀成需要的形状,然后再生长一层氧化物1281。通过氧化物在不同区域生长速度不同而得到凹处1270 (如图12b)。如果需要,在接下来传感器的制作中可以完全去掉下电极基片上的所有氧化层1280/1281和氮化硅层1285或将其刻蚀成需要的形状。
    具体实施方式
    以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
    实施例一图7a中,各个基兀有和图3中的基兀一样的结构,它包括一个上电极750, —个下电极760和均匀传感空间770。但在不同的位置的基元的传感空间的高度可以有所变化,从而使在不同位置的基元可以有不同的传感效应。例如,传感空间770,770A,770B和770C依次变高,从而使传感效应依次变小。
    理想情况下,传感器的传感效应分布应设计为高斯函数(Gaussian function)的形状(如图6a中的曲线610),这样传感效应分布的传感器的波束分布里没有旁瓣。
    如果没有办法将传感器的分布做成理想的高斯分布,可以设计多个阶梯分布(例如图6a中的曲线620和630)的传感效应来尽量接近理想的高斯分布),所以770、770A、 770B和770C的传感效应数值应根据其在传感器的位置来确定其相应的传感效应数值从而使其形成的传感器传感效应更接近高斯分布。有些分布也许不是最优化的是,最佳的分布设计要根据传感器的形状,大小以及传感器的工作频率来定,一般来讲,需要通过模拟 (simulation)实验确定。
    实施例二图8a中,各个基元有和图3或图4中的基元一样的结构,通过改变一个电极的形状或用不均匀厚度的介电绝缘层,从而实现高度不均匀的等效传感空间。其等效结构包括一个上电极850,一个下电极860和不均匀传感空间870。传感空间870有至少两个不同等效高度的部分,在这个实例中,中间的等效传感空间高于其他部分。各个传感器基元中的传感空间不均匀部分的相对比例可以根据设计有所变化,不均匀传感空间中高的部分所占比例随着基元位置不同依次增加。同实施例I的传感器相比,实施例2中的传感器能够更容易的用微机电的制作工艺实现多种不同传感器基元的传感效应变化。这是因为微机电的制作工艺在水平方向比垂直方向更容易实现多种不同的尺寸变化。
    理想情况下,传感器的传感效应分布应设计为高斯函数(Gaussian function)的形状(如图6a中的曲线610),这样传感效应分布的传感器的波束分布里没有旁瓣。
    如果没有办法将传感器的分布做成理想的高斯分布,可以设计多个阶梯分布(例如图6a中的曲线620和630)的传感效应来尽量接近理想的高斯分布),所以800、800A、 800B和800C的传感效应数值应根据其在传感器的位置来确定其相应的传感效应数值从而使其形成的传感器传感效应更接近高斯分布。这些分布也许不是最优化的是,最佳的分布设计要根据传感器的形状,大小以及传感器的工作频率来定,一般来讲,需要通过模拟 (simulation)实验确定。
    实施例三本实施例是实施例一的一种制作方法,如图9所示涉及了由不同传感空间高度的基元形成的超声传感器。此实施例是用可变形薄膜超声传感器(如图I)来描述相应的微机电制作工艺,同样的工艺也可以用来制作有传感效应分布的弹簧坎入式电容式微机电超声传感器(如图2)以及其他相似的微机电超声传感器的换能空间部分。
    具体制作过程如下第一步由硅片作为微机电制作工艺的下电极基片,同时此下电极基片也可以作为下电极;在下电极基片960上,形成不同深度的多个凹处970,970A和970B;第二步在下电极基片上形成一层氧化硅并将其刻蚀成支撑薄膜或薄板的支撑物920 ;第三步可以选择性地在下电极基片上生长一层氧化硅介质绝缘层930作为传感器两电极之间的绝缘保护层;第四步薄膜或薄板940放在支撑物920上。此步可以用硅片键合方法将SOI硅片键合到支撑物920上。SOI硅片上的背衬层和绝缘层被相继去掉然后得到单晶硅薄膜或薄板; 第五步在薄膜或薄板940上沉积一个金属层950作为上电极。
    实施例四本实施例是实施例二的一种制作方法,如图10所示涉及了由不同传感空间宽度的基元形成的超声传感器。此实施例是用可变形薄膜超声传感器(如图I)来描述相应的微机电制作工艺,同样的工艺也可以用来制作有传感效应分布的弹簧坎入式电容式微机电超声传感器(如图2)以及其他相似的微机电超声传感器的换能空间部分。
    具体制作过程如下第一步由硅片作为微机电制作工艺的下电极基片,同时此下电极基片也可以作为下电极,在下电极基片1060上,形成不同宽度的多个凹处1070、1070A和1070B ;第二步在下电极基片上形成一层氧化硅并将其刻蚀成支撑薄膜或薄板的支撑物 1020 ;第三步可以选择性地在下电极基片上生长一层氧化硅介质绝缘层1030作为传感器两电极之间的绝缘保护层;第四步薄膜或薄板1040放在支撑物1020上。此步可以用硅片键合方法将SOI硅片键合到支撑物1020上;S0I硅片上的背衬层和绝缘层被相继去掉然后得到单晶硅薄膜或薄板;第五步在薄膜或薄板1040上沉积一个金属层1050作为上电极。
    实施例五本实施例是实施例三与实施例四中在电极下电极基片上生成多个不同深度或不同宽度的凹处的具体制作方法,图11所示制作方法使用的是氧化硅的生长速度在有和没有氧化娃扩散阻挡层的娃片表面上的差异来实现的。在没有氧化娃扩散阻挡层的娃表面上,新的氧化硅生长速度要快于其在有氧化硅扩散阻挡层的硅表面上,从而在氧化时消耗较多的硅材料而形成凹处。
    具体制作过程如下第一步,在下电极基片上生成一层氧化硅,再根据设计所需要凹处的位置,深度和宽度刻蚀;第二部,再在整个下电极基片上生长一层氧化硅,因这一氧化层生长的厚度不均匀,从而在娃表面形成凹处;如下电极基片上不需要氧化硅层,则进行第三步,将氧化硅层刻蚀掉,得到不带氧化硅的基片上的凹处。
    实施例六本实施例是实施例三与实施例四中在电极下电极基片上生成多个不同深度或不同宽度的凹处的具体制作方法,与图11不同在于,图12所示涉及了同时使用氧化硅和氮化硅的双层结构作为硅氧化步骤的扩散阻挡层。
    具体制作过程如下第一步,在下电极基片上生成一层氧化硅,再生成一层氮化硅层,再根据设计所需要凹处的位置、深度和宽度刻蚀掉氧化硅和氮化硅层;第二步,再在下电极基片上生成氧化硅层,因这一氧化层生长的厚度不均匀,从而在硅表面形成凹处。
    如果下电极基片上不需要氧化层和氮化层,则进行第三步,即将氧化硅层和氮化硅层刻蚀掉,得到基片上的凹处。
    综上所述,现有技术在超声成像时在传感器不同区域传感器的传感效应没有差异,从而成像质量不能得到更一步的优化;本发明涉及超声波传感器领域,在上、下电极之间具有不均匀等效传感空间,提供的技术方案为传感器由多个基元组成,采用各个基元不同宽度,深度或形状的传感空间,使超声传感器具有不均匀等效传感空间从而形成不均匀的传感效应,并利用微机电的方式进行制作,制作出设计需要的传感效应分布,实现需要的孔径孔障,具有发射束明显改善,成像质量高,制作方便,尺寸精确、成本低的有益效果;从而可以克服现有技术中成像质量差、制作复杂、尺寸不够精确与成本高的缺陷,以实现成像质量高、制作方便、尺寸精确与成本低的优点。
    最后应说明的是以上所述仅为本发明的优选实施例而已,并不用于限制本发明, 尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。 凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
    权利要求
    1.一种电容式微机电超声传感器,其特征在于,包括至少两个基元,每个基元具有第一电极和第二电极,在每个基元的第一、第二电极之间具有一个等效传感空间;其中至少有两个基元的等效传感空间不一样。
    2.根据权利要求I所述的电容式微机电超声传感器,其特征在于,每个基兀具有一个均匀的等效传感空间;其中至少有两个基元的等效传感空间的高度不一样,形成超声传感器等效传感效应的不均匀分布。
    3.根据权利要求2所述的电容式微机电超声传感器,其特征在于,每个基兀的第一、第二电极均为平面电极,在第一、第二电极之间形成均匀等效传感空间。
    4.根据权利要求I所述的电容式微机电超声传感器,其特征在于,每个基兀具有一个不均匀的等效传感空间;其中至少有两个基元的等效传感空间不均匀部分的相对比例不一样,形成超声传感器等效传感效应的不均匀分布。
    5.根据权利要求4所述的电容式微机电超声传感器,其特征在于,每个基兀的第一、第二电极之间形成不均匀等效传感空间;该不均匀的等效传感空间中,包括至少两种不同的等效传感空间闻度。
    6.根据权利要求5所述的电容式微机电超声传感器,其特征在于,在每个基兀的第一、 第二电极中,至少有一个非平面电极;该非平面电极有至少两种不同空间高度,在第一、第二电极间形成不均匀等效传感空间高度。
    7.根据权利要求5所述的电容式微机电超声传感器,其特征在于,每个基兀的第一、 第二电极之间的传感空间中有一个不均匀的介质绝缘层;该介质绝缘层有至少两种不同厚度,形成超声传感器不均匀等效传感空间高度。
    8.根据权利要求I所述的电容式微机电超声传感器,其特征在于,在至少两个基元中, 第一个基元相对位于传感器中间,第二个基元相对位于传感器边上;第一个基元的传感空间和第二个基元的传感空间不一样,且第一个基元的传感效应高于第二个基元的传感效应,形成超声传感器等效传感效应中间较高边上较低的不均匀分布。
    9.根据权利要求2或4所述的电容式微机电超声传感器的制作方法,其特征在于,采用微机电制作工艺,制作具有不均匀传感效应的传感器,具体步骤如下(1)由硅片作为传感器的第一电极基片,在第一电极基片上形成多个不同深度或宽度的凹处;(2)在第一电极基片上,形成支撑物;(3)在支撑物上,形成一层薄膜或薄板;(4)在薄膜或薄板上,形成一个导电层,作为第二电极。
    10.根据权利要求9所述的电容式微机电超声传感器的制作方法,其特征在于,在具有凹处的第一电极基片或薄膜或薄板表面,生长一层绝缘层,作为传感器两电极之间的绝缘保护层。
    11.根据权利要求9所述的电容式微机电超声传感器的制作方法,其特征在于,步骤(I)中在基片上形成多个不同深度或宽度的凹处的操作,具体如下在基片上生成氧化扩散阻挡层,再根据预设形状刻蚀氧化扩散阻挡层;然后在整个基片上生长一层氧化物,得到所需在基片上的凹处。
    12.根据权利要求11所述的电容式微机电超声传感器的制作方法,其特征在于,基片用硅材料制成,氧化扩散阻挡层为氧化硅,氧化物为氧化硅。
    13.根据权利要求11所述的电容式微机电超声传感器的制作方法,其特征在于,基片用硅材料制成,氧化扩散阻挡层为氧化硅和氮化硅,氧化物为氧化硅。
    全文摘要
    本发明涉及超声波传感器领域,公开了电容式微机电超声传感器及其制作方法,由于现有技术在超声成像时在传感器不同区域传感器的传感效应没有差异,从而成像质量不能得到更进一步的优化;为此,本发明在上、下电极之间形成不均匀等效传感空间,提供的技术方案为传感器由多个基元组成,采用各个基元不同宽度,深度或形状的传感空间,使超声传感器具有不均匀等效传感空间从而形成不均匀的传感效应分布,并利用微机电的方式进行制作,制作出设计需要的传感效应分布,实现需要的孔径孔障,本发明具有发射束明显改善,成像质量高,制作方便,尺寸精确、成本低的有益效果。
    文档编号G01D5/48GK102538850SQ201210001068
    公开日2012年7月4日 申请日期2012年1月4日 优先权日2012年1月4日
    发明者陈力, 高毅品, 黄勇力 申请人:无锡智超医疗器械有限公司

    • 专利名称:一种湿法消解法以及一种电热消解仪的制作方法技术领域:本发明涉及理化分析技术领域,特别涉及一种湿法消解法以及一种电热消解仪。 背景技术:在理化分析工作时,需要将试样、反应试剂(酸液或碱液)置于容器中,在加热条件下破坏样品中的有机物或
    • 专利名称:一种热轧机支承辊的油膜含水量取样装置的制作方法技术领域:本实用新型涉及一种取样装置,尤其涉及一种应用于热轧生产过程中的对轧机的支承辊的油膜含水量取样检测装置。背景技术:目前,在钢铁生产行业的轧钢生产过程中,因为采取大量冷却水的喷射
    • 专利名称:用于测量动脉血样的至少一个参数的设备的制作方法用于测量动脉血样的至少一个参数的设备本发明涉及用于测量动脉血样的至少一个参数的设备。为了例如在加护病房中采取血样,当已向病人提供动脉输液系统时,可利用输液器中的抽吸活塞将血手动地抽吸出
    • 专利名称:一种低压验电装置的制作方法技术领域:本发明涉及一种低压电力设备的验电装置。背景技术:目前,由于现有的低压验电器(380V)都是小型化的工具,其验电器的探头长度不够,且又都需要近距离的观看验电器的指示灯亮灭状态。所以,电业系统的配电
    • 专利名称:在线式原油低含水传感器的制作方法技术领域:本实用新型涉及一种传感器,尤其是涉及一种在原油开发和生产过程中测量原油低含水率的传感器。背景技术:目前,国内测量原油低含水传感器大多采用超短波法、微波法、射频法,精度只能 达到0. 1%。
    • 专利名称:一种室内轮胎试验机的转鼓装置的制作方法技术领域:本实用新型涉及一种室内轮胎试验机的部件,更具体地说,涉及一种室内轮胎试验机的转鼓装置。背景技术:长期以来,路面障碍物的冲击对轮胎性能的影响一直缺乏有效、高效的测试手段,这是一直困扰着
    山东亚星游戏官网机床有限公司
    全国服务热线:13062023238
    电话:13062023238
    地址:滕州市龙泉工业园68号
    关键词:铣床数控铣床龙门铣床
    公司二维码
    Copyright 2010-2024 版权所有 All rights reserved 鲁ICP备19044495号-12
    【网站地图】【sitemap】