רÀûÃû³Æ£ºÒ»ÖÖ¹âÏ˲¨³¤½âµ÷¹âÆ×·åÖµ¶¨Î»·½·¨
¼¼ÊõÁìÓò£º
±¾·¢Ã÷Éæ¼°Ò»ÖÖ¹âÏ˲¨³¤½âµ÷¹âÆ×·åÖµ¶¨Î»·½·¨£¬ÌرðÉæ¼°Ò»ÖÖ»ùÓÚLMËã·¨µÄ¹âÏ˲¨³¤½âµ÷¹âÆ×·åÖµ¶¨Î»·½·¨£¬ÊôÓÚ¹âÏË´«¸Ð¼¼ÊõÁìÓò¡£
±³¾°¼¼Êõ£º
¹âÏ˹âÕ¤(FBG)×÷ΪһÖÖÃô¸ÐÔª¼þ£¬Ä¿Ç°ÔÚ¹âÏË´«¸Ð¼¼ÊõÁìÓòÀïÒѾµÃµ½·Ç³£¹ã·ºµÄÔËÓá£ÀûÓÃFBG×÷ΪÃô¸ÐÔª¼þµÄ´«¸ÐÆ÷£¬Æä´«¸ÐÔÀíÊÇ»ùÓÚFBG·´ÉäÆ×µÄÖÐÐIJ¨³¤ÓëÆäËù¾ÊÜÓ¦±ä»òζȱ仯µÄ¹ØÏµ£¬Òò´Ë׼ȷ¶ÁÈ¡FBG·´ÉäÆ×µÄÖÐÐIJ¨³¤Öµ£¬¶ÔÓÚÌá¸ßFBG´«¸ÐÆ÷µÄÐÔÄÜÖÁ¹ØÖØÒª¡£³£¹æµÄ¹âÏ˲¨³¤½âµ÷¹âÆ×·åÖµ¶¨Î»·½·¨¶àΪ²ÉÓù¦ÂʼÓȨËã·¨¡¢¸ß˹-¶àÏîʽÄâºÏËã·¨µÈ¡£¹¦ÂʼÓȨËã·¨µÄÔÀíÊÇÒÔ·´Éä¹â¹¦ÂÊΪ¼ÓȨϵÊý£¬¼ÆË㲨³¤µÄ¼ÓȨƽ¾ùÖµ£¬µÃµ½ ·´Éä¹â¹¦ÂÊÔÚ²¨³¤·½ÏòÉÏ·ÖÅäµÄÖÐÐÄλÖã¬ÒÔ´ËÖµ×÷Ϊ¹¦ÂÊ·´ÉäÆ×µÄÖÐÐIJ¨³¤£¬¿¹ÔëÐÔÄܺܲ²¨³¤½âµ÷¾«¶ÈµÍ¡£¸ß˹-¶àÏîʽÄâºÏËã·¨µÄÔÀíÊǶԲ¨ÐÎÇúÏß½øÐиß˹º¯Êý-¶àÏîʽ±ä»»£¬²ÉÓÃÒ»°ã¶àÏîʽÄâºÏ·¨µÄÔÀíµÃµ½·åֵλÖã¬ÄâºÏÇúÏß¹ý·ÖÒÀÀµ¹Û²âµÃµ½µÄÊý¾Ý£¬¿¹ÔëÐÔÄܲÇÒÈç¹û·åÖµµã²»ÔÚ¹Û²âµãÄÚ£¬·åÖµÎó²î½Ï´ó£¬²¨³¤½âµ÷¾«¶ÈµÍ¡£
·¢Ã÷ÄÚÈÝ
±¾·¢Ã÷µÄÄ¿µÄÊÇΪÁ˽â¾öÉÏÊö³£¹æ·½·¨ÖдæÔڵIJ¨³¤½âµ÷²»¹»×¼È·¡¢ÄÑÓÚÔÚʵ¼ÊÖÐÓ¦ÓõÄÎÊÌ⣬Ìá³öÒ»ÖÖ»ùÓÚLMËã·¨µÄ¹âÏ˲¨³¤½âµ÷¹âÆ×·åÖµ¶¨Î»·½·¨¡£±¾·¢Ã÷µÄÄ¿µÄÊÇͨ¹ýÒÔϼ¼Êõ·½°¸ÊµÏֵġ£±¾·¢Ã÷µÄÒ»ÖÖ¹âÏ˲¨³¤½âµ÷¹âÆ×·åÖµ¶¨Î»·½·¨£¬Æä´ý½âµ÷Ä¿±ê¹âÆ×Ϊ¾ßÓжà¸öÏñÔªµãµÄ¶à·åÖµ¹âÆ×£¬¸Ã¶¨Î»·½·¨Ëù°üº¬µÄ¹¦ÄÜÄ£¿é°üÀ¨½âµ÷Ñ»·100¡¢¹¹½¨ÄÜÁ¿Êý×éÄ£¿é101¡¢ãÐÖµ¼ì²âÄ£¿é102¡¢Ñ°·å´¦ÀíÄ£¿é103ºÍ²¨³¤ÄâºÏÄ£¿é106£¬ÆäÖнâµ÷Ñ»·100ÓÖ°üÀ¨Á½¸öÄ£¿é¼´¹¹½¨ÄâºÏÊý×éÄ£¿é104ºÍLM·åÖµ¶¨Î»Ä£¿é105 £»±¾·¢Ã÷µÄÒ»ÖÖ¹âÏ˲¨³¤½âµ÷¹âÆ×·åÖµ¶¨Î»·½·¨£¬²½Öè°üÀ¨I)¸ù¾Ý´ý½âµ÷Ä¿±ê¹âÆ×ÖÐN¸öÏñÔªµãµÄ¹âÆ×ÄÜÁ¿ÖµPji]£¬ÀûÓù¹½¨ÄÜÁ¿Êý×éÄ£¿é101£¬¹¹½¨¸÷ÏñÔª¶ÔӦλÖõÄÄÜÁ¿Êý×éP[i]£¬²¢È¡P[i]µÄ×î´óֵΪP_£¬P[i]¿ÉÒÔ²ÉÓÃP[i] =P0[i]-P0
»òÕßP[i] = (PQ[i]-PQ
)P_Á½ÖÖ·½Ê½¹¹½¨£¬ÆäÖи÷ÏñÔª¶ÔӦλÖõÄË÷ÒýÊý×é N[i] = i+1,ËùÊö i = 0,1, . . . , N-I ;2)ÀûÓÃãÐÖµ¼ì²âÄ£¿é102£¬¸ù¾Ý´ý½âµ÷Ä¿±ê¹âÆ×¼°×î´óÖµPmaxÑ¡ÔñºÏÊʵÄãÐÖµ²ÎÊýa¡¢b,²¢¼ÆËã±È½ÏãÐÖµTh = Pmax/a+b £»3)ͨ¹ýѰ·å´¦ÀíÄ£¿é103£¬´ÓN¸öÏñÔªµãÖеõ½Ë÷Òý·Ö±ðΪII1, n2£¬......£¬nMµÄ¹²
M¸ö·åÖµ£¬²¢´ÓÄÜÁ¿Êý×éP [i]ÖвéÕÒ¸÷·åÖµ¶ÔӦλÖõÄÄÜÁ¿Êý×éÖµÒ²¼´ÓÐЧ±»²âFBGµÄ·µ»ØÖµ P[j]£¬ÆäÖÐ j = Ii1, n2£¬......£¬nM ;4)¶ÔÓÚµÚÒ»¸ö·åÖµIi1£¬ÀûÓù¹½¨ÄâºÏÊý×éÄ£¿é104¹¹½¨ÄâºÏÊý×飬¾ßÌåΪ´ÓN[i]ºÍP[i]ÖÐÈ¡ÓëIi1ÏàÁÚµÄË÷ÒýΪIi1-X, -,H1, -n^yµÄL¸öÊý¹¹½¨ÄâºÏÊý×éX[k]ºÍY[k]£¬ÆäÖÐ L = x+y+l£¬k= 1£¬2£¬...£¬L£¬X[k]Ϊ Y[k]µÄË÷ÒýÊý×飬Áî X[k] = 1,2, ...,I£»5)ͨ¹ýLM·åÖµ¶¨Î»Ä£¿é105£¬¶ÔÊý¾ÝX[k]ºÍY[k]ÀûÓÃLMËã·¨½øÐзåÖµ¶¨Î»£¬µÃµ½µÚÒ»¸ö·åÖµIi1¶ÔÓ¦µÄÖÐÐÄÏñÔªË÷ÒýÖµ£»6)¶ÔÓÚ²½Öè3)Öеõ½µÄË÷ÒýΪIi1ÒÔºóµÄ¸÷·åÖµ£¬Ö´Ðнâµ÷Ñ»·100Ò²¼´Öظ´²½Öè4)ºÍ²½Öè5)£¬µÃµ½·åÖµ·Ö±ðΪn2£¬¡¡£¬nMʱ¶ÔÓ¦µÄÖÐÐÄÏñÔªË÷ÒýÖµ£»7)ÔËÓöàÏîʽÄâºÏ½«¸÷·åÖµ¶ÔÓ¦µÄÖÐÐÄÏñÔªË÷Òýֵת»»ÎªÖÐÐIJ¨³¤¡£ ÉÏÊö²½Öè3)ÖÐѰ·å´¦ÀíÄ£¿é103ѰÕÒ·åÖµµÄ¹ý³ÌÖвÉÓÃÁ½´ÎѰ·åËã·¨£¬µÚÒ»´ÎѰ·å£¬½«P[i]Öи÷Öµ·Ö±ðÓëTh½øÐбȽϣ¬´óÓÚTh×÷Ϊһ¸ö¿ÉÄܵķåÖµ»òÕß³ÆÎªÓÐЧ±»²âFBGµÄ·µ»ØÖµ£»µÚ¶þ´ÎѰ·å£¬¶ÔµÚÒ»´ÎѰ·åÖеõ½µÄ¿ÉÄÜ·åÖµ£¬·Ö±ð½«Ã¿¸ö·åÖµºÍ¸Ã·åÖµÔÚP[i]Êý×éÖÐǰºóÏàÁÚµÄL¸öÊý½øÐбȽϣ¬ÈôP[i]ΪÆäÖеÄ×î´óÖµ£¬ÔòΪһ¸öÓÐЧ·åÖµÒ²¼´ÓÐЧµÄ±»²âFBGµÄ·µ»ØÖµ£¬LÖµ¸ù¾Ý¸÷·åÖµ¼ä¸ôÈ·¶¨£»±¾·¢Ã÷ÖлùÓÚLMËã·¨µÄ¹âÏ˲¨³¤½âµ÷¹âÆ×·åÖµ¶¨Î»µÄÔÀí¶ÔÓÚ¹âÏËBragg¹âÕ¤µÄ·´É书ÂÊÆ×ÃܶÈÇúÏߣ¬ÀíÂÛÉÏÆäÇ¿¶È×î´óֵλÓÚÖÐÐIJ¨³¤´¦£¬²¢ÒÔÖÐÐIJ¨³¤ÎªÖá×óÓҶԳƣ¬ÇúÏß¿ÉÒÔÓøß˹º¯Êý½üËÆ±í´ïΪF(x) =B1GXpt-(X^1)Vc12](I)±¾·½·¨Í¨¹ý¶ÔÖмä±äÁ¿X¡£= (A£¬B£¬C)µÄ·ÇÏßÐÔÄâºÏ·¨ÊµÏÖ¶ÔÆä¸ß¾«¶ÈµÄLMËã·¨ÄâºÏ¡£Ôڸô¦Àí·½·¨ÖУ¬ÐèÒªÔÚ¶ÔÊý¾Ý½øÐÐÄâºÏǰµÄ±ä»»£¬½«Ê½(I)½øÐÐÈçϱ任G(x) =F(x) = exp [_ (X-Id1) VcJ+ln (aj ](2)G(x) =F(x) = exp [~x2/c12+2b1x/c^+ln (a:) -b//C12](3)ÁîA = I/C12, B = 21^/C12, C = In (a:) Hd12/C12,¿ÉµÃG (X) =F (X) = exp (_Ax2+Bx+C)(4)ÀûÓÃLMÄâºÏµÃµ½×î¼ÑµÄÊý×éXJAJA)£¬½ø¶ø¿ÉµÃʽ¢ÅÖÐʵ¼Ê´ýÇóµÄÊý×é(&1£¬b1 C1)Ϊa: = exp (C+b//C12)(5)Io1 = B c^/2(6)C1 = I/ V A(7)´Óʽ(3)¿ÉÒÔ·¢ÏÖ£¬Öмä±äÁ¿·ÇÏßÐÔÄâºÏ·¨ÔÚÊý¾Ý´¦Àí¹ý³ÌÖУ¬ÈÔÈ»±£ÁôÁËʵ¼Ê²âµÃ¸÷¸öÊý¾Ý²É¼¯µãµÄÔʼÊý¾ÝY[i]£¬¶øÎ´½øÐÐÈκÎÖмäת±ä£¬Òò¶ø¿ÉÒÔÔںܴó³Ì¶ÈÉϱ£Ö¤Êµ¼ÊÊý¾ÝµÄÄâºÏ¾«¶È¡£Í¬Ê±£¬¸Ã´¦Àí·½·¨Ïà¶ÔÓÚÖ±½Ó·ÇÏßÐÔÄâºÏ·¨µÄÓŵãÔÚÓÚ£¬ÀûÓÃÖмä±äÁ¿¼ò»¯ÁËÖм䴦ÀíÔËËã¹ý³Ì¡£³õʼ²ÎÊýX¡£= (A, B, C)µÄѡȡ£¬¿ÉÒÔ±íʾΪA= 1/(M)2£¬B = 2A (N)£¬C = -A (N)2£¬ÆäÖÐMΪ¹âÆ×µÄ3db´ø¿í£¬N±íʾ×î´óÖµPmax¶ÔÓ¦µÄË÷ÒýÊý×éÖµ¡£²½Öè5)ÖÐLM·åÖµ¶¨Î»Ä£¿é105ͨ¹ýÒÔϲ½ÖèʵÏÖ½øÐзåÖµ¶¨Î»501)ÉèÖóõʼ²ÎÊýX¡£= (A£¬B£¬C)¡¢×èÄáÒò×ÓyÒÔ¼°Ëõ·Å³£ÊýV¡¢k £»502)¼ÆËãµü´úϵÊýfc¡¢gc¡¢jac¡¢nu,ÉèÖõü´ú´ÎÊýJ = O;503)ͨ¹ý¼ÆËãÖмä±äÁ¿xt,ÐÞÕýµü´úϵÊýfc, gc, jac, nu ;504)ͨ¹ý×èÄáÒò×ÓU£¬Ëõ·Å³£ÊýV¡¢k¿ØÖƵü´ú¹ý³Ì£¬Ê¹µÃ²ÎÊýX¡£´ïµ½×îÓÅÖµ£¬½ø¶øµÃµ½¾«È·µÄÖÐÐÄÏñÔªN¡£= B/ (2A)¡£ÓÐÒæÐ§¹û
±¾·¢Ã÷ÓëÏÖÓÐËã·¨¶Ô±È¾ßÓÐÓŵãI.ÀûÓÃLM½øÐзåÖµÄâºÏÏÔÖøÌá¸ßÁ˹âÏ˲¨³¤½âµ÷µÄ¾«¶È¡£Ñ°·å´¦ÀíÄ£¿é103²ÉÓÃÁ½´ÎѰ·åËã·¨£¬ÊµÏÖ׼ȷ²éÕÒÓÐЧ±»²âFBGÏóÔª¡£LM·åÖµ¶¨Î»Ä£¿é105Öгõʼ²ÎÊýXc = (A, B, C),×èÄáÒò×Óii = 0. 001,Ëõ·Å³£ÊýV = 10, k = 0. IµÄѡȡ£¬²»½ö¼õÉÙÁË LMËã·¨µÄµü´ú´ÎÊý£¬¶øÇÒ¼Ó¿ìÁËËã·¨µÄÊÕÁ²ËÙ¶È¡£LM·åÖµ¶¨Î»Ä£¿é105ÖжÔÖмä±äÁ¿X¡£µÄ·ÇÏßÐÔÄâºÏ£¬ÔÚÊý¾Ýµü´ú¹ý³ÌÖÐÈÔÈ»±£ÁôÁËʵ¼Ê²âµÃµÄÔʼÊý¾ÝY[k]£¬¶øÎ´½øÐÐÈκÎÖмäת±ä£¬Òò¶ø¿ÉÒÔÔںܴó³Ì¶ÈÉϱ£Ö¤Êµ¼ÊÊý¾ÝµÄÄâºÏ¾«¶È¡£ÊµÏÖÁ˶ÔÖÐÐÄÏñÔªN¡£µÄ¸ß¾«¶ÈÄâºÏ£¬ÏÔÖøÌá¸ßÁ˹âÏ˲¨³¤½âµ÷µÄ¾«¶È¡£2.ͨ¹ý¼ò»¯ºóµÄÊý¾Ý´¦Àí¹ý³Ì£¬±ãÓÚÔÚÊý×Öµç·ÉÏʵÏÖ¡£¹¹½¨ÄÜÁ¿Êý×éÄ£¿é101ÖÐP[i]µÄ¹¹½¨·½·¨ÕûÌåËõСÁËÊý¾Ý´óС£¬¹¹½¨ÄâºÏÊý×éÄ£¿é104ÖÐË÷ÒýÊý×éX[i]µÄÉèÖ÷½Ê½¼ò»¯ÁËÊý¾Ý´¦Àí¹ý³Ì£¬LM·åÖµ¶¨Î»Ä£¿é105ÀûÓÃÖмä±äÁ¿X¡£= (A£¬B£¬C)µÄ·ÇÏßÐÔÄâºÏ¼ò»¯Á˵ü´ú¹ý³ÌÖеĴóÁ¿Êý¾ÝÔËËã¡£ÉÏÊö·½·¨Ê¹µÃ»ùÓÚLMµÄ¹âÏ˲¨³¤½âµ÷¹âÆ×·åÖµ¶¨Î»Ëã·¨±ãÓÚÔÚÊý×Öµç·ÉÏʵÏÖ¡£
ͼIΪ±¾·¢Ã÷µÄÁ÷³Ì¿òͼ£»Í¼2±¾·¢Ã÷ʵʩÀýÖйâÆ×ÄÜÁ¿ÇúÏßͼ£»Í¼3±¾·¢Ã÷ʵʩÀýÖÐÀûÓÃLMËã·¨½øÐзåÖµ¶¨Î»µÄÁ÷³Ì¿òͼ¡£
¾ßÌåʵʩ·½Ê½
ÏÂÃæ½áºÏ¸½Í¼ºÍʵʩÀý¶Ô±¾·¢Ã÷×ö½øÒ»²½ËµÃ÷¡£Ò»ÖÖ¹âÏ˲¨³¤½âµ÷¹âÆ×·åÖµ¶¨Î»·½·¨£¬Æä´ý½âµ÷Ä¿±ê¹âÆ×Ϊ¾ßÓжà¸öÏñÔªµãµÄ¶à·åÖµ¹âÆ×£¬¸Ã¶¨Î»·½·¨Ëù°üº¬µÄ¹¦ÄÜÄ£¿é°üÀ¨½âµ÷Ñ»·100¡¢¹¹½¨ÄÜÁ¿Êý×éÄ£¿é101¡¢ãÐÖµ¼ì²âÄ£¿é102¡¢Ñ°·å´¦ÀíÄ£¿é103ºÍ²¨³¤ÄâºÏÄ£¿é106£¬ÆäÖнâµ÷Ñ»·100ÓÖ°üÀ¨Á½¸öÄ£¿é¼´¹¹½¨ÄâºÏÊý×éÄ£¿é104ºÍLM·åÖµ¶¨Î»Ä£¿é105 £»ÈçͼIËùʾ£¬¸Ã·½·¨µÄ²½Öè°üÀ¨I)¸ù¾Ý´ý½âµ÷Ä¿±ê¹âÆ×ÖÐN¸öÏñÔªµãµÄ¹âÆ×ÄÜÁ¿ÖµPji]£¬ÀûÓù¹½¨ÄÜÁ¿Êý×éÄ£¿é101£¬¹¹½¨¸÷ÏñÔª¶ÔӦλÖõÄÄÜÁ¿Êý×éP[i]£¬²¢È¡P[i]µÄ×î´óֵΪP_£¬P[i]¿ÉÒÔ²ÉÓÃP[i] =P0[i]-P0
»òÕßP[i] = (PQ[i]-PQ
)/P_Á½ÖÖ·½Ê½¹¹½¨£¬ÆäÖи÷ÏñÔª¶ÔӦλÖõÄË÷ÒýÊý×é N[i] = i+1,ËùÊö i = 0,1, . . . , N-I ;2)ÀûÓÃãÐÖµ¼ì²âÄ£¿é102£¬¸ù¾Ý´ý½âµ÷Ä¿±ê¹âÆ×¼°×î´óÖµPmaxÑ¡ÔñºÏÊʵÄãÐÖµ²ÎÊýa¡¢b,²¢¼ÆËã±È½ÏãÐÖµTh = Pmax/a+b £»3)ͨ¹ýѰ·å´¦ÀíÄ£¿é103£¬´ÓN¸öÏñÔªµãÖеõ½Ë÷Òý·Ö±ðΪIi1, n2£¬......£¬nMµÄ¹²
M¸ö·åÖµ£¬²¢´ÓÄÜÁ¿Êý×éP [i]ÖвéÕÒ¸÷·åÖµ¶ÔӦλÖõÄÄÜÁ¿Êý×éÖµÒ²¼´ÓÐЧ±»²âFBGµÄ·µ»ØÖµ P[j]£¬ÆäÖÐ j = Ii1, n2£¬......£¬nM ;4)¶ÔÓÚµÚÒ»¸ö·åÖµIi1£¬ÀûÓù¹½¨ÄâºÏÊý×éÄ£¿é104¹¹½¨ÄâºÏÊý×飬¾ßÌåΪ´ÓN[i]ºÍP[i]ÖÐÈ¡ÓëIi1ÏàÁÚµÄË÷ÒýΪIi1-X, -,H1, -n^yµÄL¸öÊý¹¹½¨ÄâºÏÊý×éX[k]ºÍY[k]£¬ÆäÖÐ L = x+y+l£¬k= 1£¬2£¬...£¬L£¬X[k]Ϊ Y[k]µÄË÷ÒýÊý×飬Áî X[k] = 1,2, ...,I£»5)ͨ¹ýLM·åÖµ¶¨Î»Ä£¿é105£¬¶ÔÊý¾ÝX[k]ºÍY[k]ÀûÓÃLMËã·¨½øÐзåÖµ¶¨Î»£¬µÃµ½µÚÒ»¸ö·åÖµIl1¶ÔÓ¦µÄÖÐÐÄÏñÔªË÷ÒýÖµ£»6)¶ÔÓÚ²½Öè3)Öеõ½µÄË÷ÒýΪIi1ÒÔºóµÄ¸÷·åÖµ£¬Ö´Ðнâµ÷Ñ»·100Ò²¼´Öظ´²½Öè4)ºÍ²½Öè5)£¬µÃµ½·åÖµ·Ö±ðΪn2£¬¡¡£¬nMʱ¶ÔÓ¦µÄÖÐÐÄÏñÔªË÷ÒýÖµ£»7)ÔËÓöàÏîʽÄâºÏ½«¸÷·åÖµ¶ÔÓ¦µÄÖÐÐÄÏñÔªË÷Òýֵת»»ÎªÖÐÐIJ¨³¤¡£ÉÏÊö²½Öè3)ÖÐѰ·å´¦ÀíÄ£¿é10 3ѰÕÒ·åÖµµÄ¹ý³ÌÖвÉÓÃÁ½´ÎѰ·åËã·¨£¬µÚÒ»´ÎѰ·å£¬½«P[i]Öи÷Öµ·Ö±ðÓëTh½øÐбȽϣ¬´óÓÚTh×÷Ϊһ¸ö¿ÉÄܵķåÖµ»òÕß³ÆÎªÓÐЧ±»²âFBGµÄ·µ»ØÖµ£»µÚ¶þ´ÎѰ·å£¬¶ÔµÚÒ»´ÎѰ·åÖеõ½µÄ¿ÉÄÜ·åÖµ£¬·Ö±ð½«Ã¿¸ö·åÖµºÍ¸Ã·åÖµÔÚP[i]Êý×éÖÐǰºóÏàÁÚµÄL¸öÊý½øÐбȽϣ¬ÈôP[i]ΪÆäÖеÄ×î´óÖµ£¬ÔòΪһ¸öÓÐЧ·åÖµÒ²¼´ÓÐЧµÄ±»²âFBGµÄ·µ»ØÖµ£¬LÖµ¸ù¾Ý¸÷·åÖµ¼ä¸ôÈ·¶¨£»±¾·¢Ã÷ÖлùÓÚLMËã·¨µÄ¹âÏ˲¨³¤½âµ÷¹âÆ×·åÖµ¶¨Î»µÄÔÀí¶ÔÓÚ¹âÏËBragg¹âÕ¤µÄ·´É书ÂÊÆ×ÃܶÈÇúÏߣ¬ÀíÂÛÉÏÆäÇ¿¶È×î´óֵλÓÚÖÐÐIJ¨³¤´¦£¬²¢ÒÔÖÐÐIJ¨³¤ÎªÖá×óÓҶԳƣ¬ÇúÏß¿ÉÒÔÓøß˹º¯Êý½üËÆ±í´ïΪF(x) =B1GXpt-(X^1)Vc12](I)±¾·½·¨Í¨¹ý¶ÔÖмä±äÁ¿X¡£= (A£¬B£¬C)µÄ·ÇÏßÐÔÄâºÏ·¨ÊµÏÖ¶ÔÆä¸ß¾«¶ÈµÄLMËã·¨ÄâºÏ¡£Ôڸô¦Àí·½·¨ÖУ¬ÐèÒªÔÚ¶ÔÊý¾Ý½øÐÐÄâºÏǰµÄ±ä»»£¬½«Ê½(I)½øÐÐÈçϱ任G(x) =F(x) = exp [_ (X-Id1) VcJ+ln (aj ](2)G(x) =F(x) = exp [~x2/c12+2b1x/c^+ln (a:) -b//C12](3)ÁîA = I/C12, B = 21^/C12, C = In (a:) Hd12/C12,¿ÉµÃG (X) =F (X) = exp (_Ax2+Bx+C)(4)ÀûÓÃLMËã·¨ÄâºÏµÃµ½×î¼ÑµÄÊý×éX¡£= (A, B£¬C)£¬½ø¶ø¿ÉµÃʽ¢ÅÖÐʵ¼Ê´ýÇóµÄÊý×é(a1; b1£» C1)Ϊa: = exp (C+b//C12)(5)Io1 = B cJ/2(6)C1 = I/ V A(7)´Óʽ(3)¿ÉÒÔ·¢ÏÖ£¬Öмä±äÁ¿·ÇÏßÐÔÄâºÏ·¨ÔÚÊý¾Ý´¦Àí¹ý³ÌÖУ¬ÈÔÈ»±£ÁôÁËʵ¼Ê²âµÃ¸÷¸öÊý¾Ý²É¼¯µãµÄÔʼÊý¾ÝY[k]£¬¶øÎ´½øÐÐÈκÎÖмäת±ä£¬Òò¶ø¿ÉÒÔÔںܴó³Ì¶ÈÉϱ£Ö¤Êµ¼ÊÊý¾ÝµÄÄâºÏ¾«¶È¡£Í¬Ê±£¬¸Ã´¦Àí·½·¨Ïà¶ÔÓÚÖ±½Ó·ÇÏßÐÔÄâºÏ·¨µÄÓŵãÔÚÓÚ£¬ÀûÓÃÖмä±äÁ¿¼ò»¯ÁËÖм䴦ÀíÔËËã¹ý³Ì¡£¸ù¾Ý¹âÆ×ÄÜÁ¿ÇúÏßµÄÐÔÖÊ£¬³õʼ²ÎÊýX¡£= (A£¬B£¬C)µÄѡȡ£¬¿ÉÒÔ±íʾΪA= 1/(M)2,B = 2A (N), C = -A (N)2£¬ÆäÖÐMΪΪ¹âÆ×µÄ3db´ø¿í£¬N±íʾ×î´óÖµPmax¶ÔÓ¦µÄË÷ÒýÊý×éÖµ¡£²½Öè5)ÖÐLM·åÖµ¶¨Î»Ä£¿é105ͨ¹ýÒÔϲ½ÖèʵÏÖ½øÐзåÖµ¶¨Î»501)ÉèÖóõʼ²ÎÊýX¡£= (A£¬B£¬C)¡¢×èÄáÒò×ÓyÒÔ¼°Ëõ·Å³£ÊýV¡¢k;502)¼ÆËãµü´úϵÊýfc¡¢gc¡¢jac¡¢nu,ÉèÖõü´ú´ÎÊýJ = O;503)ͨ¹ý¼ÆËãÖмä±äÁ¿xt,ÐÞÕýµü´úϵÊýfc, gc, jac, nu £»504)ͨ¹ý×èÄáÒò×ÓU£¬Ëõ·Å³£ÊýV¡¢k¿ØÖƵü´ú¹ý³Ì£¬Ê¹µÃ²ÎÊýX¡£´ïµ½×îÓÅÖµ£¬½ø¶øµÃµ½¾«È·µÄÖÐÐÄÏñÔªN¡£= B/ (2A)¡£ÊµÊ©ÀýÒÔͼ2ÖоßÓÐ81¸öÏñÔªµãµÄ¶à·åÖµ¹âÆ×202×÷Ϊ±¾ÊµÊ©ÀýµÄ´ý½âµ÷¹âÆ×£¬Í¼2ÖУ¬ºá×ø±êΪÏñÔªË÷ÒýÖµN[i]£¬i = 0£¬I-80£¬×ÝÖáΪʵ¼Ê²âÁ¿µÄ¸÷ÏñÔª¶ÔӦλÖõĹâÄÜÁ¿Êý×éPQ[i]£¬i = 0£¬1 "80£¬ÐéÏßÇúÏß201Ϊʵ¼Ê¹âÆ×ÄÜÁ¿ÇúÏߣ¬ÊµÏßÇúÏß202Ϊ²âÁ¿µÃµ½µÄ¹âÆ×ÄÜÁ¿ÇúÏߣ¬·åÖµµã203Ϊʵ¼Ê¹âÆ×·åÖµÖ®Ò»£¬·åÖµµã204Ϊ²âÁ¿µÃµ½µÄ¹âÆ×·åÖµÖ®Ò»£»¹âÆ×·åÖµ¶¨Î»Ëã·¨µÄʵʩ·½Ê½ÊǶÔͼ2ÖеIJâÁ¿¹âÆ×ÇúÏß202ÀûÓÃLMËã·¨½øÐÐÄâºÏµÃµ½Êµ¼Ê¹âÆ×ÄÜÁ¿ÇúÏß201£¬½ø¶ø¶Ô¹âÆ×·åÖµ½øÐо«È·¶¨Î»£¬µÃµ½Êµ¼Ê¹âÆ×·åÖµ203¡£ÒÔͼ2ÖвâÁ¿µÃµ½µÄ¹âÆ×ÄÜÁ¿ÇúÏß202ΪÀý£¬¸ÃÇúÏß¾ßÓоßÓÐ4¸ö·åÖµ£¬²ÉÓñ¾·¢Ã÷µÄ¹âÆ×·åÖµ¶¨Î»Ëã·¨°üÀ¨Èçϲ½ÖèI)½«²âÁ¿¹âÆ×ÇúÏß202×÷Ϊ´ý½âµ÷Ä¿±ê¹âÆ×£¬¸ù¾Ý´ý½âµ÷Ä¿±ê¹âÆ×ÖÐ81¸öÏñÔªµãµÄ¹âÆ×ÄÜÁ¿Öµ£¬ÀûÓù¹½¨ÄÜÁ¿Êý×éÄ£¿é101£¬¹¹½¨¸÷ÏñÔª¶ÔӦλÖõÄÄÜÁ¿Êý×éP[i]£¬²¢È¡P[i]µÄ×î´óÖµÚà_£¬£¿[1] =P0[i] Ò» PJ0]£¬¸÷ÏñÔª¶ÔӦλÖõÄË÷ÒýÊý×éN[i] = i+1, (i =0£¬I. N)£»2)ÀûÓÃãÐÖµ¼ì²âÄ£¿é102£¬¸ù¾Ý´ý½âµ÷Ä¿±ê¹âÆ×Ñ¡ÔñºÏÊʵÄãÐÖµ²ÎÊýa = 5¡¢b =8£¬²¢¼ÆËã±È½ÏãÐÖµTh = Pmax/5+8 £»3)ͨ¹ýѰ·å´¦ÀíÄ£¿é103½øÐÐѰ·å£¬¾ßÌåΪµÚÒ»´ÎѰ·å£¬½«P[i]Öи÷Öµ·Ö±ðÓëTh½øÐбȽϣ¬´óÓÚTh×÷Ϊһ¸ö¿ÉÄܵķåÖµ»òÕß³ÉΪÓÐЧ±»²âFBGµÄ·µ»ØÖµ£¬´ËʱµÃµ½5¸ö¿ÉÄܵķåÖµP[j]£¬ÇÒj = 15£¬28£¬40£¬65£¬66 ;µÚ¶þ´ÎѰ·å£¬¶ÔµÚÒ»´ÎѰ·åÖеõ½µÄ5¸ö¿ÉÄÜ·åÖµ£¬·Ö±ð½«Ã¿¸ö·åÖµP[j]ºÍ¸Ã·åÖµÔÚP[i]Êý×éÖÐǰºóÏàÁÚµÄ4¸öÊý½øÐбȽϣ¬ÈôP[i]ΪÆäÖеÄ×î´óÖµ£¬ÔòΪһ¸öÓÐЧ·åÖµÒ²¼´ÓÐЧµÄ±»²âFBGµÄ·µ»ØÖµ£¬×îÖյõ½4¸öÓÐЧ±»²âFBGµÄ·µ»ØÖµ P[j]£¬ÆäÖÐ j = 15,28,40,65 £»4)¶ÔÓÚµÚÒ»¸ö·åÖµ15Ò²¼´Í¼2ÖзåÖµµã203£¬ÀûÓù¹½¨ÄâºÏÊý×éÄ£¿é104¹¹½¨ÄâºÏÊý×飬¾ßÌåΪ´ÓN[i]ºÍP[i]ÖÐÈ¡Ë÷ÒýΪ12¡¢13¡¢14¡¢15¡¢16¡¢17¡¢18µÄ7¸öÊý¹¹½¨ÄâºÏÊý ×é X[k]ºÍ Y[k]£¬k= 1£¬2£¬¡£¬7£¬X[k]Ϊ Y[k]µÄË÷ÒýÊý×飬Áî X[k] = 1£¬2£¬...£¬7;5)ͨ¹ýLM·åÖµ¶¨Î»Ä£¿é105£¬¶ÔÊý¾ÝX[k]ºÍY[k]ÀûÓÃLMËã·¨½øÐзåÖµ¶¨Î»£¬µÃµ½µÚÒ»¸ö·åÖµ15¶ÔÓ¦µÄÖÐÐÄÏñÔªË÷ÒýÖµM[15] = 14. 940 £»6)¶ÔÓÚ²½Öè3)Öеõ½µÄË÷ÒýΪ28£¬40£¬65µÄ¸÷·åÖµ£¬Ö´Ðнâµ÷Ñ»·100Ò²¼´Öظ´²½Öè4)ºÍ²½Öè5)£¬µÃµ½·åÖµ·Ö±ðΪn2£¬¡¡£¬nMʱ¶ÔÓ¦µÄÖÐÐÄÏñÔªË÷ÒýÖµ£»7)ÔËÓöàÏîʽÄâºÏ½«¸÷·åÖµ¶ÔÓ¦µÄÖÐÐÄÏñÔªË÷Òýֵת»»ÎªÖÐÐIJ¨³¤¡£ÉÏÊö²½Öè5)ÖÐLM·åÖµ¶¨Î»Ä£¿é105ÀûÓÃLMËã·¨½øÐзåÖµ¶¨Î»µÄʵʩ¹ý³ÌÈçͼ3Ëùʾ£¬°üº¬ÒÔϲ½Öè²½Öè301£¬ÉèÖóõʼ²ÎÊýX¡££¬ÆäÖÐA = 2£¬B = 12£¬C =-18£¬×èÄáÒò×Óii =0.001£¬Ëõ·Å³£ÊýV = 10, k = 0. I ;²½Öè302,¼ÆËãµü´úϵÊý fc, gc, jac, nu,ÆäÖÐ nu = E (I I gc | |),fc = E [exp (_Ax2+Bx + C)-Y]2£¬jac = [ j a c (I) , jac (2) , j a c (3) ] , gc =jac£¬ [exp (-Ax2+Bx+C) _Y],ÉèÖõü´ú´ÎÊý J = 0,ÆäÖÐ jac (I) = _x2 exp (_Ax2+Bx+C),jac (2) =x* exp (_Ax2+Bx+C), jac (3) = exp (_Ax2+Bx+C)£»²½Öè303,¼ÆËã xt, xt = Xc-[jac; jac)+nu eye (3) F1 gc,ÉèÖõü´ú´ÎÊý idid=0 £»²½Öè304,¼ÆËã ft = E [exp (_xt (I) x2+xt (2) x+xt (3))-Y]2 ;²½Öè305,¼ÆËã rat, rat = (fc-ft)/ (-gc/ (xt~Xc))£»²½Öè306£¬ÅжÏratÊÇ·ñСÓÚ0. 25£¬Èç¹ûСÓÚ0. 25£¬½øÈë²½Öè307 ;Èç¹û²»Ð¡ÓÚ0. 25£¬½øÈë²½Öè308 £»²½Öè307,ÐÞÕýµü´úϵÊýnu, nu = max (nu v, k),½øÈë²½Öè311 £»²½Öè308£¬ÅжÏratÊÇ·ñСÓÚ0. 75£¬Èç¹ûСÓÚ0. 75£¬½øÈë²½Öè309 ;Èç¹û²»Ð¡ÓÚ0. 75£¬½øÈë²½Öè311 £»²½Öè309,ÅжÏnu UÊÇ·ñСÓÚk,Èç¹ûСÓÚk,½øÈë²½Öè310 ;Èç¹û²»Ð¡ÓÚk,½øÈë²½Öè311 £»²½Öè310,ÐÞÕýµü´úϵÊýnu,Áînu = 0,½øÈë²½Öè311 £»²½Öè311£¬Åжϵü´úϵÊýididÊÇ·ñСÓÚM£¬Èç¹ûСÓÚM£¬¼ÌÐøµü´ú¹ý³Ì316 ;Èç¹û²»Ð¡ÓÚM£¬Í£Ö¹µü´ú£¬½øÈë²½Öè312 £»²½Öè312,ÐÞÕý³õʼ²ÎÊýXc, Xc = Xt £» ²½Öè313£¬Åжϵü´úϵÊýJÊÇ·ñСÓÚN£¬Èç¹ûСÓÚN£¬¼ÌÐøµü´ú¹ý³Ì315 ;Èç¹û²»Ð¡ÓÚN£¬Í£Ö¹µü´ú£¬½øÈë²½Öè314;²½Öè314,¼ÆËãÖÐÐÄÏñÔªN¡£= B/ (2A),½áÊø±¾´Î·åÖµ¶¨Î»£»²½Öè315,ÁîJ = J+1,ÐÞÕýµü´úϵÊýfc, gc, jac, nu,½øÈë²½Öè303 £»²½Öè316,Áî idid = idid+1,¼ÆËã xt = Xc-[jac ' jac) +nu eye (3) ]-1 gc,½øÈë²½Öè304¡£ÒÔÉÏËùÊöΪ±¾·¢Ã÷µÄ½Ï¼ÑʵʩÀý¶øÒÑ£¬±¾·¢Ã÷²»Ó¦¸Ã¾ÖÏÞÓÚ¸ÃʵʩÀýºÍ¸½Í¼Ëù¹«¿ªµÄÄÚÈÝ¡£·²ÊDz»ÍÑÀë±¾·¢Ã÷Ëù¹«¿ªµÄ¾«ÉñÏÂÍê³ÉµÄµÈЧ»òÐ޸쬶¼ÂäÈë±¾·¢Ã÷±£»¤µÄ·¶Î§¡£
ȨÀûÒªÇó
1.Ò»ÖÖ¹âÏ˲¨³¤½âµ÷¹âÆ×·åÖµ¶¨Î»·½·¨£¬Æä´ý½âµ÷Ä¿±ê¹âÆ×Ϊ¾ßÓжà¸öÏñÔªµãµÄ¶à·åÖµ¹âÆ×£¬ÆäÌØÕ÷ÔÚÓÚ£¬¸Ã·åÖµ¶¨Î»·½·¨Ëù°üº¬µÄ¹¦ÄÜÄ£¿é°üÀ¨½âµ÷Ñ»·(100)¡¢¹¹½¨ÄÜÁ¿Êý×éÄ£¿é(101)¡¢ãÐÖµ¼ì²âÄ£¿é(102)¡¢Ñ°·å´¦ÀíÄ£¿é(103)ºÍ²¨³¤ÄâºÏÄ£¿é(106)£¬ÆäÖнâµ÷Ñ»·(100)ÓÖ°üÀ¨Á½¸öÄ£¿é¼´¹¹½¨ÄâºÏÊý×éÄ£¿é(104)ºÍLM·åÖµ¶¨Î»Ä£¿é(105)£¬¶¨Î»·½·¨µÄ²½Öè°üÀ¨ 1)¸ù¾Ý´ý½âµ÷Ä¿±ê¹âÆ×ÖÐN¸öÏñÔªµãµÄ¹âÆ×ÄÜÁ¿ÖµPJi]£¬ÀûÓù¹½¨ÄÜÁ¿Êý×éÄ£¿é(101)£¬¹¹½¨¸÷ÏñÔª¶ÔӦλÖõÄÄÜÁ¿Êý×éP[i]£¬²¢È¡P[i]µÄ×î´óֵΪP_£¬P[i]¿ÉÒÔ²ÉÓÃP[i] =P0[i]-P0
»òÕßP[i] = (PQ[i]-PQ
)P_Á½ÖÖ·½Ê½¹¹½¨£¬ÆäÖи÷ÏñÔª¶ÔӦλÖõÄË÷ÒýÊý×é N[i] = i+1,ËùÊö i = 0,1, . . . , N-I ; 2)ÀûÓÃãÐÖµ¼ì²âÄ£¿é(102)£¬¸ù¾Ý´ý½âµ÷Ä¿±ê¹âÆ×¼°×î´óÖµPmaxÑ¡ÔñºÏÊʵÄãÐÖµ²ÎÊýa¡¢b,²¢¼ÆËã±È½ÏãÐÖµTh = Pmax/a+b £» 3)ͨ¹ýѰ·å´¦ÀíÄ£¿é(103)£¬´ÓN¸öÏñÔªµãÖеõ½Ë÷Òý·Ö±ðΪIi1,n2£¬......£¬nMµÄ¹²M¸ö·åÖµ£¬²¢´ÓÄÜÁ¿Êý×éP [i]ÖвéÕÒ¸÷·åÖµ¶ÔӦλÖõÄÄÜÁ¿Êý×éÖµÒ²¼´ÓÐЧ±»²âFBGµÄ·µ»ØÖµ P[j]£¬ÆäÖÐ j = Ii1, n2, ......, nM £» 4)¶ÔÓÚµÚÒ»¸ö·åÖµIi1£¬ÀûÓù¹½¨ÄâºÏÊý×éÄ£¿é(104)¹¹½¨ÄâºÏÊý×飬¾ßÌåΪ´Ón[i]ºÍP[i]ÖÐÈ¡ÓëIi1ÏàÁÚµÄË÷ÒýΪIi1-X,¡£¬½Ð£¬ !!#µÄL¸öÊý¹¹½¨ÄâºÏÊý×éX[k]ºÍY[k]£¬ÆäÖÐ L = x+y+1, k = 1,2, ...,L, X[k]Ϊ Y[k]µÄË÷ÒýÊý×飬Áî X[k] = 1,2, ...,I£» 5)ͨ¹ýLM·åÖµ¶¨Î»Ä£¿é(105)£¬¶ÔÊý¾ÝX[k]ºÍY[k]ÀûÓÃLMËã·¨½øÐзåÖµ¶¨Î»£¬µÃµ½µÚÒ»¸ö·åÖµIi1¶ÔÓ¦µÄÖÐÐÄÏñÔªË÷ÒýÖµ£» 6)¶ÔÓÚ²½Öè3)Öеõ½µÄË÷ÒýΪIi1ÒÔºóµÄ¸÷·åÖµ£¬Ö´Ðнâµ÷Ñ»·100()Ò²¼´Öظ´²½Öè4)ºÍ²½Öè5)£¬µÃµ½·åÖµ·Ö±ðΪn2£¬¡¡£¬nMʱ¶ÔÓ¦µÄÖÐÐÄÏñÔªË÷ÒýÖµ£» 7)ÔËÓöàÏîʽÄâºÏ½«¸÷·åÖµ¶ÔÓ¦µÄÖÐÐÄÏñÔªË÷Òýֵת»»ÎªÖÐÐIJ¨³¤¡£
2.¸ù¾ÝȨÀûÒªÇóIËùÊöµÄÒ»ÖÖ¹âÏ˲¨³¤½âµ÷¹âÆ×·åÖµ¶¨Î»·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ£¬ËùÊö²½Öè3)ÖÐѰ·å´¦ÀíÄ£¿é(103)ѰÕÒ·åÖµµÄ¹ý³ÌÖвÉÓÃÁ½´ÎѰ·åËã·¨µÚÒ»´ÎѰ·å£¬½«P [i]Öи÷Öµ·Ö±ðÓëTh½øÐбȽϣ¬´óÓÚTh×÷Ϊһ¸ö¿ÉÄܵķåÖµ»òÕß³ÆÎªÓÐЧ±»²âFBGµÄ·µ»ØÖµ£»µÚ¶þ´ÎѰ·å£¬¶ÔµÚÒ»´ÎѰ·åÖеõ½µÄ¿ÉÄÜ·åÖµ£¬·Ö±ð½«Ã¿¸ö¿ÉÄÜ·åÖµºÍ¸Ã·åÖµÔÚP[i]Êý×éÖÐǰºóÏàÁÚµÄL¸öÊý½øÐбȽϣ¬ÈôP[i]ΪÆäÖеÄ×î´óÖµ£¬ÔòΪһ¸öÓÐЧ·åÖµÒ²¼´ÓÐЧµÄ±»²âFBGµÄ·µ»ØÖµ£¬LÖµ¸ù¾Ý¸÷·åÖµ¼ä¸ôÈ·¶¨¡£
3.¸ù¾ÝȨÀûÒªÇóIËùÊöµÄÒ»ÖÖ¹âÏ˲¨³¤½âµ÷¹âÆ×·åÖµ¶¨Î»·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ£¬ËùÊö²½Öè5)ÖÐLM·åÖµ¶¨Î»Ä£¿é(105)ͨ¹ýÒÔϲ½ÖèʵÏÖ½øÐзåÖµ¶¨Î» 501)ÉèÖóõʼ²ÎÊýX¡£=(A£¬B£¬C)¡¢×èÄáÒò×ÓyÒÔ¼°Ëõ·Å³£ÊýV¡¢k; 502)¼ÆËãµü´úϵÊýfc¡¢gc¡¢jac¡¢nu; 503)ͨ¹ý¼ÆËãÖмä±äÁ¿xt,ÐÞÕýµü´úϵÊýfc,gc, jac, nu £» 504)ͨ¹ý×èÄáÒò×ÓU£¬Ëõ·Å³£Êýv¡¢k¿ØÖƵü´ú¹ý³Ì£¬Ê¹µÃ²ÎÊýX¡£¸ù¾ÝÖмä±äÁ¿Xt´ïµ½×îÓÅÖµ£¬½ø¶øµÃµ½¾«È·µÄÖÐÐÄÏñÔªN¡£= B/ (2A)¡£
4.¸ù¾ÝȨÀûÒªÇó3ËùÊöµÄÒ»ÖÖ¹âÏ˲¨³¤½âµ÷¹âÆ×·åÖµ¶¨Î»·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ£¬ËùÊö²½Öè504)ÊÇͨ¹ý¶ÔÖмä±äÁ¿X¡£= (A£¬B£¬C)µÄ·ÇÏßÐÔÄâºÏµÃµ½ÖÐÐÄÏñÔªN¡£µÄ¸ß¾«¶ÈÄâºÏ¡£
5.¸ù¾ÝȨÀûÒªÇó3ËùÊöµÄÒ»ÖÖ¹âÏ˲¨³¤½âµ÷¹âÆ×·åÖµ¶¨Î»·½·¨£¬ÆäÌØÕ÷ÔÚÓÚ£¬³õʼ²ÎÊý X¡£= (A£¬B£¬C)µÄѡȡ£¬¿ÉÒÔ±íʾΪ A = 1/(M)2£¬B = 2A (N)£¬C = -A (N)2£¬ÆäÖÐ M ΪΪ¹âÆ×µÄ3db´ø¿í£¬N±íʾ×î´óÖµPmax¶ÔÓ¦µÄ Ë÷ÒýÊý×éÖµ¡£
È«ÎÄÕªÒª
±¾·¢Ã÷Éæ¼°Ò»ÖÖ¹âÏ˲¨³¤½âµ÷¹âÆ×·åÖµ¶¨Î»·½·¨£¬ÊôÓÚ¹âÏË´«¸Ð¼¼ÊõÁìÓò¡£¸Ã·½·¨Ê×ÏȶԻñµÃµÄÑÜÉä¹âÆ×ÄÜÁ¿Êý¾Ý½øÐÐ×î´óÖµ¼ì²â£¬¸ù¾Ý×î´óֵȷ¶¨ºÏÊʵÄãÐÖµ£¬ÔÙÓøÃãÐÖµ½øÐÐѰ·å´¦Àí£¬½«´¦ÀíºóµÄÊý¾Ý¹¹½¨ÄâºÏÊý×飬ÀûÓÃLM·åÖµ¶¨Î»Ëã·¨¶Ô¹âÆ×½øÐÐ׼ȷ·åÖµ¶¨Î»¡£¸ÃËã·¨Ïà¶ÔÓÚÏÖÓеŦÂʼÓȨËã·¨ºÍ¸ß˹-¶àÏîʽÄâºÏËã·¨£¬¾ßÓи߾«¶È¶¨Î»¹âÆ×·åÖµµÄÓŵ㣬ͨ¹ý¼ò»¯ºóµÄÊý¾Ý´¦Àí¹ý³Ì£¬±ãÓÚÔÚÊý×Öµç·ÉÏʵÏÖ¡£
Îĵµ±àºÅG01D5/26GK102706372SQ20121008551
¹«¿ªÈÕ2012Äê10ÔÂ3ÈÕ ÉêÇëÈÕÆÚ2012Äê3ÔÂ28ÈÕ ÓÅÏÈȨÈÕ2012Äê3ÔÂ28ÈÕ
·¢Ã÷ÕߺÎÑåè°, ÉêÑÅ·å, ºú´ºÑÞ ÉêÇëÈË:Öйúº½¿Õ¹¤Òµ¼¯ÍŹ«Ë¾±±¾©³¤³Ç¼ÆÁ¿²âÊÔ¼¼ÊõÑо¿Ëù