亚星游戏官网-www.yaxin868.com

山东亚星游戏官网机床有限公司铣床官方网站今天是:2025-04-01切换城市[全国]-网站地图
推荐产品 :
推荐新闻
技术文章当前位置:技术文章>

基于高超声速脉冲风洞的进气道流场npls测量系统及方法

时间:2023-06-15    作者: 管理员

专利名称:基于高超声速脉冲风洞的进气道流场npls测量系统及方法
技术领域
本发明涉及高超声速风洞试验领域,特别地,涉及一种基于高超声速脉冲风洞的进气道流场结构的NPLS测量系统。此外,本发明还涉及一种基于高超声速脉冲风洞的进气道流场结构的NPLS测量方法。
背景技术
高超声速飞行器的飞行速度大于马赫5,而其实现高速飞行的关键在于超燃冲压发动机的性能。超燃冲压发动机的组成包括了进气道、隔离段、燃烧室和尾喷管。进气道的作用是收集气体并对气体进行预压缩,使气体减速、增压。燃烧室是气体与燃料发生超声速燃烧的地方,其内部存在高温高压,燃料的化学能转化为气体的机械能,之后气体经过尾部喷管加速后喷出飞行器而产生较 大的推力。隔离段是介于进气道和燃烧室之间的一段气体通道,其结构虽然简单,但是发挥着重要作用。气体进入进气道后在隔离段内发生极为复杂的流动现象,包括激波、激波串、激波/边界层相互作用、边界层分离等。其作用是隔离燃烧室内的高温高压环境,防止由此导致的进气道堵塞以及发动机不启动,另外隔离段提供了气体进一步减速、增压的场所,有利于气体和燃料充分混合、燃烧。由于飞行器以高超声速飞行,所以进气道所遇到的气流速度也是高超声速。那么要开展高超声速进气道的实验研究,首先要解决的就是如何设计相关的实验设备和实验方法。很显然,首先需要一座能产生高超声速气流的风洞,然后是满足测试需求的进气道模型,之后还需要可靠、可行的实验方法。高超声速炮风洞可以用于产生高超声速流场,目前广泛的应用于高超声速飞行器、人造卫星、航天飞机、空天飞机的模型实验,是航空航天领域内非常重要的空气动力地面实验设备。高超声速炮风洞运行的基本原理如图1所示。实验前,高压段1、第一夹膜机
5、低压段2、第二夹膜机6、喷管3等部件依次连接好,第一夹膜机5夹紧两个第一膜片51以形成模腔52。实验时,高压段I管道内充至实验所需的高压气体,低压段2内充少量低压气体,同时膜腔52内也充气到一定压力,确保高压段I和膜腔52之间的第一膜片51不破裂,膜腔52和低压段2之间的第一膜片51不破裂,实际上,模腔52的两个第一膜片51起到平衡高低压气体压力差的作用。此时,快速释放膜腔52内的气体,高压段I和膜腔52的压力差迅速增大,两个第一膜片51就会先后破裂,高压气体迅速进入到低压段2,推动轻质量的活塞21向右推进,在高压的作用下,轻质量的活塞21运动速度很快,会在活塞21前形成正激波。正激波到达第二膜片61时发生发射,遇到前进的活塞21,激波反射反复进行,对低压段2管道内气体不断压缩,使其压力、温度提高,压力提高到一定程度,第二膜片61破裂,高温高压气体进入喷管3膨胀,达到所需的高超声速气流进入实验舱4,实验模型41在实验舱4内即可以进行高超声速气动实验。获得了高超声速气流之后,就要考虑采用何种实验技术来测量实验舱内模型周边的高超声速流场结构。传统的实验技术包括测量模型压力分布,测量模型受到的阻力、升力,然而这些技术在得到流场的力学特性的同时会对实验流场造成一定的干扰。采用光学非接触技术能够在不干扰流场的情况下获得流场结构,如纹影、阴影等。但是这类传统的光学技术存在空间积分、时间积分等效应,无法得到流场的瞬态精细结构。易仕和等人开发的NPLS技术能够获得超声速流场的瞬态精细结构,已经成功应用于几种典型的超声速流动,如超声速平板边界层、超声速钝头体绕流、超声速混合层等。虽然该技术在诸多方面有明显的优势,但是无法直接用于高超声速炮风洞的进气道实验测量。因为高超声速炮风洞的运行时间很短,通常只有20ms左右,而NPLS的激光片光必须恰好在风洞的运行时间内发出,才能拍摄到流场结构。现有的NPLS不需要考虑其本身与风洞运行的同步控制问题。故亟需开发一种应用于高超声速风洞的流场测量系统及方法,以获取该流场的瞬态精细结构。另夕卜,进气道研究很关心其流场的时间序列结构,换句话说就是要得到气流到达模型表面不同位置时捕获相应的流动图像。而现有的NPLS技术只能够连续拍摄2张时间间隔很短的流场图像。要想拍摄多张相互时间间隔很短的图像,目前只能通过重复实验次数,拍摄气流到达不同位置时的图像来近似获得时间序列的流动图像。

发明内容
本发明目的在于提供一种基于高超声速脉冲风洞的进气道流场NPLS测量系统,以解决高超声速风洞中进气道无法进行瞬态精细结构测量的技术问题。本发明的另一目的在于提供一种基于高超声速脉冲风洞的进气道流场NPLS测量方法,以解决高超声速风洞中进气道无法进行瞬态精细结构测量的技术问题。为实现上述目的,本发明采用的技术方案如下:一种基于高超声速脉冲风洞的进气道流场NPLS测量系统,适用于测量位于高超声速风洞的实验舱内的进气道模型的高超声速脉冲流场的瞬态精细结构,该系统包括:与高超声速风洞的低压段相连的粒子发生器,粒子发生器用于在低压段的气体中注入纳米粒子; 数字信号采集器及分布在进气道模型上用于检测进气道模型表面压力的压力传感器,数字信号采集器接收压力传感器输出的第一信号并生成触发信号;同步控制器,与数据信号采集器相连接并生成用于控制激光器及成像装置工作的控制信号;激光器,用于根据同步控制器生成的控制信号发出照亮实验舱内高超声速脉冲流场的脉冲激光;成像装置,用于根据同步控制器生成的控制信号对实验舱内的高超声速脉冲流场进行成像,以获得高超声速脉冲流场的纳米粒子图像;计算机,用于控制同步控制器的工作时序及存储成像装置生成的纳米粒子图像。进一步地,成像装置为CXD相机,CXD相机通过数据传输接口与计算机相连。进一度地,压力传感器为多个,并分布在进气道模型表面沿轴向的不同位置上,以检测高超声速气流流经进气道模型不同位置或不同时刻的压力变化。进一步地,激光器的发射端设有用于传导激光的导光臂,激光器发射的脉冲激光经导光臂导出并照亮高超声速脉冲流场。根据本发明的另一方面,一种基于高超声速脉冲风洞的进气道流场NPLS测量方法,应用上述的基于高超声速脉冲风洞的进气道流场NPLS测量系统,该方法包括以下步骤:S1:粒子发生器向高超声速风洞的低压段内注入纳米粒子;S2:开启高超声速风洞以生成高超声速气流;S3:压力传感器检测进气道模型表面的瞬间压力变化并生成第一信号发送给数字信号采集器;S4:数字信号采集器根据第一信号生成触发信号并将触发信号传递给同步控制器;S5:同步控制器接收到触发信号后生成控制信号以驱动激光器发出脉冲激光并驱动成像装置同时对超声速流场进行曝光成像;S6:成像装置将曝光后采集到的纳米粒子图像传递至计算机存储。进一步地,压力传感器为多个,并分布在进气道模型表面沿轴向的不同位置上,以检测高超声速气流流经进气道模型不同位置或不同时刻的压力变化,数据采集器接收多个压力传感器生成的第一信号,通过程序设置选定某个压力传感器对应的第一信号使能以生成触发信号传递给同步控制器。进一步地,分别设置不同位置的压力传感器生成的第一信号使能并循环执行步骤SI至S6,得到进气道高超声流场在不同时间点上对应的纳米粒子图像。进一步地,压力传感器生成的第一信号为阶跃信号。本发明具有以下有益效果:本发明基于高超声速脉冲风洞的进气道流场NPLS测量系统及方法,通过将NPLS测量与高超声速风洞及进气道模型结合起来,并在进气道模型上设置有压力传感器以检测高超声气流进入进气道模型不同位置或不同时刻的压力变化,从而得到了能够反映高超声速飞行器进气道流场结构的纳米粒子图像,且由于高超声速风洞的运行时间极短,为毫秒量级,进气道流场的流动现象复杂,本发明将NPLS测量应用至高超声速流场测量领域为测量高超声速进气道流场的精细结构提供了可靠的瞬态纳米粒子图像。进一步,本发明基于高超声速脉冲风洞的进气道流场NPLS测量系统及方法通过在进气道模型上沿轴向分布多个压力传感器以检测对应时间序列上不同时间点上反映进气道高超声速流场结构的纳米粒子图像,为进气道流动机理的研究提供了重要的实验数据。除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。


构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:图1是现有技术中高超声速炮风洞的结构示意图;图2是本发明优选实施例基于高超声速脉冲风洞的进气道流场NPLS测量系统的立体结构示意图;图3是本发明优选实施例基于高超声速脉冲风洞的进气道流场NPLS测量系统的结构示意图;图4是本发明优选实施例基于高超声速脉冲风洞的进气道流场NPLS测量方法的步骤流程图;以及图5是本发明优选实施例NPLS测量方法的时序示意图。
具体实施例方式以下结合附图对本发明的实施例进行详细说明,但是本发明可以由权利要求限定和覆盖的多种不同方式实施。参照图2及图3,本发明的优选实施例提供了一种基于高超声速脉冲风洞的进气道流场NPLS测量系统,适用于测量位于高超声速风洞的实验舱4内的进气道模型41’的高超声速脉冲流场的瞬态精细结构。其中,高超声速风洞包括依次连接的高压段1、第一夹膜机5、低压段2、第二夹膜机6、喷管3及实验舱4,第一夹膜机5夹紧两个第一膜片51以形成模腔52,第二夹膜机6内设有用于阻挡低压段2与喷管3的第二膜片61,在低压段2内设有轻质量活塞21。高超声速风洞主要用于产生高超声气流以进行风洞实验,具体的工作原理如下:试验时,高压段I和低压段2内的气体充至试验所需的压力,在模腔52内也充气至一定压力,确保高压段I和模腔52之间的第一膜片51不破裂,模腔52与低压段2之间的第一膜片51不破裂,模腔
52起到了平衡高压段I与低压段2高低压气体的压力差;快速释放模腔52的气体,模腔52的两个第一膜片51在高压段I的压力差作用下先后破裂。此时,高压气体迅速进入到低压段2并推动轻质量活塞21向右推进,在高压的作用下,轻质量活塞21运动速度很快,会在轻质量活塞21前形成正激波。正激波到达第二膜片61时发生发射,遇到前进的轻质量活塞21,激波反射反复进行,对低压段2管道内气体不断压缩,使其压力、温度提高,压力提高到一定程度,第二膜片61破裂,高温高压气体进入喷管3膨胀,达到所需的高超声速气流进入实验舱4,进气道模型41’在实验舱4内即可以进行高超声速气动实验。由于高超声速风洞的运行时间非常短,在本实施例中为20ms,故对测量系统的灵敏度提出了更高的要求,保证测量系统能够在高超声风洞的运行时间内测量流场数据。本发明NPLS测量系统包括:粒子发生器7、激光器8、成像装置、同步控制器9、计算机11、数据信号采集12及压力传感器13。其中,粒子发生器7与高超声速风洞的低压段2相连以在低压段2的气体中注入纳米粒子用于示踪;压力传感器13位于进气道模型41’上用于检测进气道模型41’表面压力,以感应高超声速风洞产生的高超声速气流,压力传感器13生成第一信号并将第一信号传递给数字信号采集器12,数字信号采集器12接收到压力传感器13输出的第一信号并生成触发信号;数字信号采集器12的输出端与同步控制器9相连并将生成的触发信号传递给同步控制器9。同步控制器9根据接收到的触发信号生成控制信号并发送控制信号给激光器8及成像装置;激光器8,用于根据同步控制器9生成的控制信号发出照亮实验舱4内高超声速脉冲流场的脉冲激光;成像装置,用于根据同步控制器9生成的控制信号对实验舱4内的高超声速脉冲流场进行成像,以获得高超声速脉冲流场的纳米粒子图像;计算机11,用于控制同步控制器9的工作时序及存储成像装置生成的纳米粒子图像。在本实施例中,成像装置为CXD相机10,CXD相机10通过数据传输接口与计算机11相连。高超声速气流中携带的纳米粒子被脉冲激光照亮后,纳米粒子将激光散射出来,CCD相机10曝光采集到纳米粒子图像,当然,本领域技术人员可以理解,成像装置还可为高速CMOS相机。本发明将粒子发生器7与高超声速风洞的低压段2相连,使得粒子发生器7将纳米粒子注入到低压段2的气体中,在风洞运行时,纳米粒子随低压段2内的气体一起进入喷管3,保证了纳米粒子能够很好地跟随高超声速气流,且纳米粒子的喷入时刻恰好与高超声速风洞的运行时间一致。由于高超声速风洞的运行时间非常短暂,故本发明通过数据采集器12及压力传感器13采集进气道模型41’表面压力的瞬间变化,从而为同步控制器9提供生成控制信号的触发信号,进一步控制激光器8发射脉冲激光及CCD相机10曝光同步进行,从而实现了对高超声速脉冲流场下进气道流场结构的瞬态精细测量。较佳地,压力传感器13为多个,并分布在进气道模型41’表面沿轴向的不同位置上,以检测高超声速气流流经进气道模型41’不同位置或不同时刻的压力变化,进而使得整个测量系统可以按照一定的时序测量高超声速脉冲流场的瞬态结构。较佳地,激光器8的发射端设有用于传导激光的导光臂81,激光器8发射的脉冲激光经导光臂81导出并照亮高超声速脉冲流场。参照图4,一种基于高超声速脉冲风洞的进气道流场NPLS测量方法,应用本发明的NPLS测量系统,该方法包括以下步骤:S1:粒子发生器7向高超声速风洞的低压段2内注入纳米粒子;S2:开启高超声速风洞以生成高超声速气流;模腔51快速放气,风洞运行,则风洞内的气流携带纳米粒子形成高超声气流进入实验舱4。S3:压力传感器13检测进气道模型41’表面的瞬间压力变化并生成第一信号发送给数字信号采集器12 ;当风洞运行时,进气道模型41’表面的压力会突然升高,压力传感器13瞬间输出较高的电平信号以形成第一信号。S4:数字信号采集器12根据第一信号生成触发信号并将触发信号传递给同步控制器9;S5:同步控制器9接收到触发信号后生成控制信号以驱动激光器8发出脉冲激光并驱动成像装置同时对超声速流场进行曝光成像;S6:成像装置将曝光后采集到的纳米粒子图像传递至计算机11存储。在本实施例中,成像装置为CXD相机10,CXD相机10经曝光后生成代表进气道流场的纳米粒子图像,并将纳米粒子图像经数据传输接口传递至计算机11存储。参照图5,压力传感器13检测到进气道模型41’表面的瞬间压力变化生成的第一信号为阶跃信号,数字信号采集器12接收到来自压力传感器13的阶跃信号后生成触发信号,同步控制器9接收到触发信号后生成用于控制激光器8发出脉冲激光及CCD相机10曝光成像的控制信号,具体而言,同步控制器9在接收到触发信号后生成第一控制信号,并将第一控制信号发送给CCD相机10,CCD相机10接收到第一控制信号后发送反馈信号给同步控制器9,同步控制器9在收到反馈信号后发送第二控制信号以驱动激光器8发射脉冲激光,CCD相机10在发送反馈信号的同时进行曝光并保持曝光状态,从而保证了激光器在风洞运行时发射脉冲激光及CCD相机10能够在极短的瞬间采集到纳米粒子因脉冲激光的照亮散射的出来的流场图像,从而生成纳米图像并将纳米图像存储至计算机11。较佳地,压力传感器13为多个,并分布在进气道模型41’表面沿轴向的不同位置上,以检测高超声速气流流经进气道模型41’不同位置或不同时刻的压力变化,数据采集器12接收多个压力传感器13生成的第一信号,通过程序设置选定某个压力传感器13对应的第一信号使能以生成触发信号传递给同步控制器9,在同步控制器9的时序控制下保证了激光器8发射脉冲激光与CXD相机曝光成像的同步。通过分别设置不同位置的压力传感器13生成的第一信号使能并反复执行步骤SI至S6,即可得到进气道高超声速脉冲流场在不同时间点上对应的纳米粒子图像。由于不同位置上的压力传感器13生成的阶跃信号对应时间序列上的不同时间点,故本发明NPLS测量方法实现了对进气道高超声速脉冲流场时间序列的瞬态测量,为进气道动力性能分析提供了瞬态精细结构数据。以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
权利要求
1.一种基于高超声速脉冲风洞的进气道流场NPLS测量系统,适用于测量位于高超声速风洞的实验舱(4)内的进气道模型(41’ )的高超声速脉冲流场的瞬态精细结构,其特征在于,该系统包括: 与所述高超声速风洞的低压段(2)相连的粒子发生器(7),所述粒子发生器(7)用于在所述低压段(2)的气体中注入纳米粒子; 数字信号采集器( 12)及分布在所述进气道模型(41’ )上用于检测所述进气道模型(41’ )表面压力的压力传感器(13),所述数字信号采集器(12)接收所述压力传感器(13)输出的第一信号并生成触发信号; 同步控制器(9),与所述数据信号采集器(12)相连接并生成用于控制激光器(8)及成像装置工作的控制信号; 所述激光器(8),用于根据所述同步控制器(9)生成的控制信号发出照亮实验舱(4)内闻超声速脉冲流场的脉冲激光; 所述成像装置,用于根据所述同步控制器(9)生成的控制信号对所述实验舱(4)内的高超声速脉冲流场进行成像,以获得高超声速脉冲流场的纳米粒子图像; 计算机(11),用于控制所述同步控制器(9)的工作时序及存储所述成像装置生成的纳米粒子图像。
2.根据权利要求1所述的基于高超声速脉冲风洞的进气道流场NPLS测量系统,其特征在于: 所述成像装置为CCD相机(10),所述CCD相机(10)通过数据传输接口与所述计算机(11)相连。
3.根据权利要求1所述的基于高超声速脉冲风洞的进气道流场NPLS测量系统,其特征在于: 所述压力传感器(13)为多个,并分布在所述进气道模型(41’ )表面沿轴向的不同位置上,以检测高超声速气流流经所述进气道模型(41’ )表面不同位置或不同时刻的压力变化。
4.根据权利要求1所述的基于高超声速脉冲风洞的进气道流场NPLS测量系统,其特征在于: 所述激光器(8)的发射端设有用于传导激光的导光臂(81),所述激光器(8)发射的脉冲激光经所述导光臂(81)导出并照亮所述高超声速脉冲流场。
5.一种基于高超声速脉冲风洞的进气道流场NPLS测量方法,应用权利要求1至4中任一项所述的基于高超声速脉冲风洞的进气道流场NPLS测量系统,其特征在于,该方法包括以下步骤: 51:粒子发生器(7)向高超声速风洞的低压段(2)内注入纳米粒子; 52:开启高超声速风洞以生成高超声速气流; 53:压力传感器(13)检测进气道模型(41’ )表面的瞬间压力变化并生成第一信号发送给数字信号采集器(12); 54:所述数字信号采集器(12)根据所述第一信号生成触发信号并将触发信号传递给同步控制器(9); 55:所述同步控制器(9)接收到所述触发信号后生成控制信号以驱动激光器(8)发出脉冲激光并驱动成像装置同时对超声速流场进行曝光成像; S6:所述成像装置将曝光后采集到的纳米粒子图像传递至计算机(11)存储。
6.根据权利要求5所述的基于高超声速脉冲风洞的进气道流场NPLS测量方法,其特征在于: 所述压力传感器(13)为多个,并分布在所述进气道模型(41’)表面沿轴向的不同位置上,以检测高超声速气流流经所述进气道模型(41’ )不同位置或不同时刻的压力变化,所述数据采集器(12)接收多个所述压力传感器(13)生成的所述第一信号,通过程序设置选定某个所述压力传感器(13)对应的所述第一信号使能以生成所述触发信号传递给所述同步控制器(9)。
7.根据权利要求6所述的基于高超声速脉冲风洞的进气道流场NPLS测量方法,其特征在于: 分别设置不同位置的压力传感器(13)生成的第一信号使能并循环执行步骤SI至S6,得到时间序列的进气道高超声流场结构在不同时间点上对应的纳米粒子图像。
8.根据权利要求5所述的基于高超声速脉冲风洞的进气道流场NPLS测量方法,其特征在于: 所述压力传感器(13)生成的所述第一信号为阶跃信 号。
全文摘要
本发明公开了一种基于高超声速脉冲风洞的进气道流场NPLS测量系统及方法,该系统包括粒子发生器、同步控制器、激光器、成像装置、计算机及用于检测进气道模型表面压力的压力传感器,压力传感器生成的第一信号经数字信号采集器传递给同步控制器,激光器及成像装置在同步控制器的时序控制下保证了发射脉冲激光与曝光成像的同步,从而实现了对高超声速进气道流场的瞬态结构测量。通过采用模型表面不同位置的压力传感器信号作为触发信号,循环实验,便可将不同的实验结果拼接成一段近似时间序列的进气道流场结构NPLS图像集。
文档编号G01M9/06GK103149010SQ201310057028
公开日2013年6月12日 申请日期2013年2月22日 优先权日2013年2月22日
发明者陈植, 易仕和, 何霖, 冈敦殿, 周勇为, 付佳 申请人:中国人民解放军国防科学技术大学

  • 专利名称::基于定位护套的接力超声波检测管的制作方法技术领域::本实用新型涉及一种预埋在桩基中方便超声波探头进出的超声波检测管,尤其涉及一种基于定位护套的接力超声波检测管。背景技术::随着高速公路、高速铁路、能源工程建设和西部大开发力度的加
  • 专利名称:用于岩土工程土壤龟裂破坏的模型试验装置的制作方法技术领域:本实用新型涉及岩土试验技术领域,尤其涉及一种用于岩土工程土壤龟裂破坏的模型试验装置。背景技术:土壤龟裂试验是指土体受到外界条件变化,如拉力隆起时,土体四周受到对称相等的张力
  • 专利名称:高速公路防雷spd的无线远程自动监测系统的制作方法技术领域:本实用新型涉及设备防雷保护领域,尤其是无线远程自动监测系统,具体地说是一种在高速公路防雷SPD的无线远程自动监测系统。背景技术:当今社会电子计算机技术、微波通信技术日益发
  • 专利名称:一种测量接地网的接地电阻的方法技术领域:本发明涉及接地网接地电阻的测量方法,更具体的说是一种测量接地网的接地电阻的方法。背景技术:现有技术中的发电厂或变电站的接地网接地电阻测量方法一般采用的是在接地网现场安装施工完成后,再进行测量
  • 专利名称:一种手动漏气测试系统的制作方法技术领域:本实用新型涉及一种检测系统,尤其是一种血液加热器的手动漏气检测系统。背景技术:血液加热器是在患者输血或输液时所用到的一种医疗产品,其功能是通过加热使得药液或在低温条件下储藏的血液升高到合适的
  • 专利名称:物体位置修正装置、物体位置修正方法及物体位置修正程序的制作方法技术领域:本发明涉及向使用者显示观测对象的位置的物体位置修正装置、物体位置修正方法及物体位置修正程序。背景技术:作为能够检测出物体的位置的传感器,有时使用照相机。照相机
山东亚星游戏官网机床有限公司
全国服务热线:13062023238
电话:13062023238
地址:滕州市龙泉工业园68号
关键词:铣床数控铣床龙门铣床
公司二维码
Copyright 2010-2024 版权所有 All rights reserved 鲁ICP备19044495号-12
【网站地图】【sitemap】