一种基于常规雷达的炮弹目标识别方法
【专利摘要】本发明属于雷达【技术领域】,具体的说是涉及一种基于常规雷达的炮弹目标识别方法。本发明公开了一种基于低分辨率雷达炮弹目标的有效识别算法,利用目标轨迹信息,采用改进的人工蜂群支持向量机算法进行炮弹目标进行识别。克服了低分辨率雷达特征数据少、分辨率低和对炮弹等小目标识别效果差等缺陷,提高了常规雷达对炮弹目标的识别率。本发明的有益效果为,有效解决了低分辨率雷达识别率低的问题,能够快速、高效的对迫击炮、榴弹炮和火箭炮等运动目标的分类识别。本发明尤其适用于常规雷达的炮弹目标识别。
【专利说明】一种基于常规雷达的炮弹目标识别方法
【技术领域】
[0001] 本发明属于雷达【技术领域】,具体的说是涉及一种基于常规雷达的炮弹目标识别方 法。
【背景技术】
[0002] 雷达目标识别是根据目标的后向电磁散射来鉴别目标。当雷达带宽足够宽时,目 标后向电磁散射包含了目标的形状、大小、结构等特征信息,这是雷达目标识别的依据(Li HJ,Wang YDIMatching Score Properties Between Range Profile of High-Resolution Radar Target [J]lIEEE Trans AP, 1996,44(4) :444-453.)。常规雷达(低分辨雷达)一般 不具备径向上和横向上的高分辨能力,其所能揭示的目标的信息非常有限,基于宽带雷达 目标识别的思想和方法很难用于常规雷达的目标分类和识别。因此,基于低分辨雷达的目 标特征描述、提取和分类等方面的研究是雷达目标识别一个重要研究方向,具有广泛的应 用前景。
[0003] 目前,在低分辨条件下对目标进行精细识别是一个广泛存在的技术难题。在低分 辨率雷达这一方面国防科技大学ATR国家重点实验室做了比较多的研究,但是主要是针对 飞机目标,并且主要利用飞机目标的回波信号进行处理和识别,对于炮弹目标并不适用。
[0004] 对目标进行分类识别时,SVM具有较高的推广能力。但是,对于不同的具体数据,利 用SVM方法进行分类识别,模型参数的选择对分类结果有显著的影响。因此,对于在常规雷 达进行目标识别时候,应该选择最优参数,以提高雷达目标识别率。但是,通过大量实验研 究发现目前常规采用的遗传算法、群蚁算法等往往只能达到局部最优,难以实现全局最优。
【发明内容】
[0005] 本发明所要解决的,就是针对上述问题,提出一种基于低分辨率雷达炮弹目标的 有效识别算法,利用目标轨迹信息,采用改进的人工蜂群支持向量机算法进行炮弹目标进 行识别。
[0006] 本发明解决上述技术问题所采用的技术方案是:一种基于常规雷达的炮弹目标识 别方法,其特征在于,包括以下步骤:
[0007] a.构建特征样本:针对迫击炮、榴弹炮、火箭炮在内的m个已知炮弹类别,利用炮 弹的运行轨迹仿真数据构建特征样本;
[0008] b.获取支持向量机参数:使用上述构建的特征样本训练支持向量机,获取最优的 支持向量机参数;
[0009] c.构建炮弹目标识别数据库:使用上述获取的支持向量机参数对特征样本进行 训练,构建炮弹目标识别数据库,并生成支持向量机分类器;
[0010] d.目标识别:识别时,将常规雷达采集的数据进行均值滤波处理后,输入到炮弹 目标识别数据库中,根据支持向量机分类器的输出,实现对炮弹目标的识别。
[0011] 具体的,所述步骤a中,针对m个已知炮弹类别,采用炮弹刚体六自由度弹道模型, 炮弹每隔一度射角仿真一条轨迹,使用龙格库塔算法对每条轨迹进行解方程获取炮弹的 特征样本Si = [Sl,s2,. . . sn],下标i表示样本目标数,i为正整数;下标η表示特征序列, Ν > 7,特征样本中至少包括:总体速度V、高度Ζ、弹道曲线斜率Θ、水平方向速度Vxy、垂直 方向速度v z、垂直方向加速度az和水平方向加速度axy。
[0012] 具体的,所述步骤b为采用人工蜂群算法对支持向量机参数进行优化,具体流程 为:
[0013] bl.获取人工蜂群算法初始化参数X,具体为首先运用公式ch1+1 = 4 · · (1-ch) ;1 = 1,2产生Logistic混沛序列,其中ch为0到1的随机数,且 ch 关 0· 25, 0· 5 和 0· 75,然后 X = Nch+CH · (Mch-Nch),其中 CH = [ch" ch2],Nch = 0· 01,Mch -^11 -^12 = 500,X表示为矩阵形式为X= 2 = 21 ,即(xn,xi2)是一个二维向量,其 _XlOO_ _-^1001 -^1002 _ 中χη对应支持向量机的惩罚参数c,xi2对应支持向量机的核函数参数g ;取最大迭代次数 MaxCN为50、并指定用于判断个体是否陷入停滞的控制参数lim的值为30 ;构建训练样本, 具体为:在特征样本集Si中每隔五度射角选出一个样本构建训练样本集5V下标j表示训 练样本数,j为正整数;特征样本集Si中减去训练样本集h后剩下的样本作为识别测试数 据;
[0014] b2.将步骤bl中构建的训练样本数据随机分为K组,分别用每一组子集数据做支 持向量机一次验证集,其余K-1组子集数据作为训练集,得到K个模型;
[0015] b3.用步骤bl中得到的支持向量机参数X分别计算K个模型的交叉验证平均识别 1 . 概率Ι/fi,计算其适应度= ^ + / 选择最大适应度对应的最优解Xb,Xi在最优解
[H4 乂 处任一维度进行变异X' ij = xbj+R · (xbj-xkj),其中,xbj表示当前最优解xb的第j维分量; xw为个体Xk的第j维分量;j,k均随机选择,且k尹b ;R为[-1,1]间的随机数;X' υ表 示新产生的个体第j维分量,其对应的新个体记为X' i ;再次计算变异后的适应度,和变异 前适应度比较,如增加则更新,否则保持原值,即& = ;
[Λ? j JKAi) ^ J\Ai)
[0016] b4.根据\的适应度函数fitp计算\的选择概率6 = 片,;靠近最优解的 解更容易被选中,某个解被选中后继续进行和步骤b3相同的变异操作,记录其未更新次数 { 〇,/{X:)<f(X;); tria^ - [trial + hf (Xf-) > /(X; )
[0017] b5.判断是否存在连续lim次迭代都没有更新的个体,若存在,则产生一个新解代 替原来的陷入局部最优的解,具体方法为A = X^+Φ X (Xmax_Xmin);其中,Φ表示区间[0, 1]内的随机数,Xmax和X min是解空间的上、下边界;
[0018] b6.判断是否达到最大迭代次数MaxCN,若是,则输出当前记录的最优解作为支持 向量机最优参数,若否,则回到步骤b2。
[0019] 具体的,步骤C中,根据特征样本31,设(Si,yi)为训练样本,其中y表示对目标的 编号,取值-1或者+1 ;将步骤b中获得的最优惩罚因子C和核函数参数g代入支持向量 机,其中核函数采用公式K(Si,Sj) = eXp{-g| ISi-Sjl |2},其中sjPSj表示第i、j个特征 样本;设超平面ω · s+b = 0,选择最优超平面转化为最小化公式Φ(?,幻=|||?112+^£在 8?^[(ωτφ (Si))+b]彡1-ξρ ξ?彡0,i = 1,2,…,η其中,ω为超平面的法向量, c为惩罚因子,b为偏置,ζ为松弛变量;引入Lagrange函数,让二次规划问题转化 成对偶问题,即为求maxQ(?)=Za,-Σμ.,λ1# j j=l ^ /=1 /=1 j=l =1,2,...,1,%彡0;可以得最优解:a* = (<<,...,〇T;最优权值向量: '=?勺>Λ(Α);最优偏置;从而可构建支持向量机分类 i-i 器函数为:
[0020] /(.v)-sgnS(w,5) + bi} = sgn;^i//'_v//C(5/,5) + b"} 〇 Μ
[0021] 本发明的有益效果为,有效解决了低分辨率雷达识别率低的问题,能够快速、高 效的对迫击炮、榴弹炮和火箭炮等运动目标的分类识别,同时还考虑了实战情况下雷达分 辨率,测量精度误差等影响,通过对多个目标的仿真数据进行识别,识别率总体达到百分之 九十左右。
【专利附图】
【附图说明】
[0022] 图1为总体识别流程图;
[0023] 图2为没改进的人工蜂群算法进行参数优化时候的搜索效果曲线图;
[0024] 图3为改进后人工蜂群算法进行参数优化时候的搜索效果曲线图。
【具体实施方式】
[0025] 下面结合附图和实施例,详细描述本发明的技术方案:
[0026] 如图1所示,本发明的方法包括以下步骤:
[0027] ( -)产生仿真数据。对于迫击炮、槽弹炮、火箭炮采用炮弹刚体六自由度弹道模 型,使用龙格库塔算法进行解方程,炮弹的初始运动参数按其典型值设定,假设大气状态为 1标准大气压,风速为〇,步长h为0. 05s。计算出迫击炮、榴弹炮、火箭炮在不同发射角度下 的炮弹飞行的弹道坐标、速度和姿态角度。
[0028] 对于迫击炮、榴弹炮、火箭炮都采用以上参数模型,对于不同炮弹设定相应的具体 参数就可得到不同情况下各种炮弹的弹道数据。按照炮位侦察校射雷达探测的要求、在规 定的弹道弧段上采集空间点数据,就可获得仿真的雷达采集数据.在求解弹道方程时,将 弹道条件、气象条件、地理条件等参数在一定范围内按照均匀分布进行随机取值.根据随 机取得的参数值,采集到目标距离R,方位角A,俯仰角E等数据然后根据公式,就可得到对 应第i个目标的训练样本Si = [Sl,s2,. . . sn],其中[Sl,s2,. . . sn]分别对应炮弹的总体速 度v、高度Z、弹道曲线斜率Θ、水平方向速度Vxy、垂直方向速度^,垂直方向加速度az,水 平方向加速度a xy等特征,η为特征数目。
[0029] (二)运用改进的人工蜂群算法对支持向量机参数进行优化;炮弹每隔一度射角 仿真一条轨迹,每隔五度选出来一条轨迹进行建库训练,设Si为第i个目标样本,并且分别 对其编号 yi,(Si>yi)表示其训练样本。利用这些训练样本对支持向量机算法进行交叉验证, 并且使用改进的人工蜂群算法对使支持向量机分类准确率最高的参数c和g进行搜索;具 体为:
[0030] 1.获取人工蜂群算法初始化参数X,具体为首先运用公式ch1+1 = 4 ?chi · α-chj ; 1 = 1,2产生Logistic混沌序列,其中chi为0到1的随机数,且chi关0. 25, 0. 5和0. 75, 然后 X = Neh+CH · (Meh-Neh),其中 CH =[咖,ch2],Neh = 0· 01,Meh = 500, X 表示为矩阵形式 % -? 为x= 2 = 21 22 ,即Xi = (xn, xi2)是一个二维向量,其中χη对应支持向量机的 --? --* ?·? _^100_ _X1001 ^1002 _ 惩罚参数C,xi2对应支持向量机的核函数参数g ;取最大迭代次数MaxCN为50、并指定侦察 蜂用于判断个体是否陷入停滞的控制参数lim的值为30。同时,每隔五度选取迫击炮、榴弹 炮和火箭炮的数据,提取其高度、速度、加速度、弹道斜率、水平速度、垂直方向速度、弹道倾 角等特征,作为支持向量机训练数据,其余的作为识别测试数据。
[0031] 2.运用炮弹数据随机分为k组,将每个子集数据分别做支持向量机一次验证集, 其余k-Ι组子集数据作为训练集,这样得到k个模型,用这k个模型最终的验证集的分类准 确率的平均来计算人工蜂群的适应度。
[0032] 3.运用步骤一产生的支持向量机参数集代入步骤二,分别计算其交叉验证平均识 别概率,从而得fi。根据(3)计算其适应度,选择最大适应度对应的最优解X b,Xi在最优解 处任一维度利用(1)式进行变异,然后利用式(2)对其更新。
[0033] X' ij = xbJ+RX (xbJ-Xkj) (1)
[0034] 其中,表示最优解Xb的第j维分量;xw为个体X k的第j维分量;j,k均随机选 择,且k尹b;R为[_1,1]间的随机数;X' ^表示新产生的第j维分量,其对应的新个体记 为r i。 _5] vf,/(幻</w ⑵
[0036] 4.跟随蜂在当前最优解附近作局部搜索,跟随蜂依据概率从种群中选择部分适应 度值较好的解根据式(3)计算\的适应度函数fitp再利用式(4)计算\的选择概率 Pi。靠近最优解的地方概率较大,概率大的解更容易被选中,选中的解继续进行和步骤三相 同的的变异操作。并用式(5)记录其未更新次数triali。
[0037] Μ =1+7' ' ~ α(3) 1Η4 /<0 (4)
[0039] 其中,&是解Xi对应的被优化的目标函数f (XJ的函数值的倒数,即支持向量机交 叉验证概率的倒数,fib是解\对应的函数值变换后的适应度函数值。 ,,? 0, f(X'.)<f(X.)
[0040] trial =\ (5)
[0041] 5.侦查蜂检查是否存在连续lim次迭代都没有更新的个体,若存在则按式(6)产
[0042] 生一个新解代替原来的陷入局部最优的解。
[0043] Χ? = Χηι?"+ΦΧ(Χ"χ-Χηι?") (6)
[0044] 式中,Φ表示区间[0,1]内的随机数,Xmax和Xmin是解空间的上、下边界。
[0045] 6.记录到目前为止的最优解。
[0046] 7.判断是否达到最大迭代次数MaxCN,若满足,则输出支持向量机最优参数,否则 转到步骤2。
[0047] 8.最大交叉验证概率最大时候可能对于多组最优解,选择最优参数对中惩罚因子 最小的解作为支持向量机的最优解
[0048](三)运用优化后的支持向量机进行建库训练和炮弹目标识别 [0049] 迫击炮、榴弹炮和火箭炮每隔五度选出来一条轨迹进行建库训练,每隔一度产生 一条轨迹用来进行识别。提取炮弹目标的高度、总体速度、水平速度、垂直方向速度、轨迹弹 道斜率、加速度等属性集作为支持向量机的训练样本,第i个目标数据记为Si,设(Si,yi)为 训练样本,其中y表示对目标的编号,取值-1或者+1。首先对两个目标进行分类,每两个目 标进行组合分类后再进行投票就可以完成多目标的支持向量机分类。
[0050] 由改进的人工蜂群算法搜索到对于本系统的最优参数c为2. 168, g为25. 324。把 最优惩罚因子c和核函数参数g代入支持向量机,核函数采用公式(7)
[0051] K(Si,Sj) = exp{_g| ISi-Sj! |2} (7),
[0052] 设超平面ω · S+b = 0,选择最优超平面转化为最小化公式(8)
【权利要求】
1. 一种基于常规雷达的炮弹目标识别方法,其特征在于,包括以下步骤: a. 构建特征样本:针对迫击炮、榴弹炮、火箭炮在内的m个已知炮弹类别,利用炮弹的 运行轨迹仿真数据构建特征样本; b. 获取支持向量机参数:使用上述构建的特征样本训练支持向量机,获取最优的支持 向量机参数; c. 构建炮弹目标识别数据库:使用上述获取的支持向量机参数对特征样本进行训练, 构建炮弹目标识别数据库,并生成支持向量机分类器; d. 目标识别:识别时,将常规雷达采集的目标运行轨迹数据进行均值滤波处理后,输 入到炮弹目标识别数据库中,根据支持向量机分类器的输出,实现对炮弹目标的识别。
2. 根据权利要求1所述的一种基于常规雷达的炮弹目标识别方法,其特征在于,所 述步骤a中,针对m个已知炮弹类别,采用炮弹刚体六自由度弹道模型,炮弹每隔一度射 角仿真一条轨迹,使用龙格库塔算法对每条轨迹进行解方程获取炮弹的特征样本& = [Sl,s2,... sn],下标i表示样本目标数,i为正整数;下标η表示特征序列,N彡7,特征样本 中至少包括:总体速度ν、高度Ζ、弹道曲线斜率Θ、水平方向速度 Vxy、垂直方向速度^、垂直 方向加速度az和水平方向加速度axy。
3. 根据权利要求2所述的一种基于常规雷达的炮弹目标识别方法,其特征在于,所述 步骤b为采用人工蜂群算法对支持向量机参数进行优化,具体流程为: bl.获取人工蜂群算法初始化参数X,具体为首先运用公式ch1+1 = 4 · eh · (1-ctO ;1 =1,2产生Logistic混沌序列,其中ch为0到1的随机数,且ch关0. 25, 0. 5和0. 75, 然后 X = Neh+CH · (Meh-Neh),其中 CH =[咖,ch2],Neh = 0· 01,Meh = 500, X 表示为矩阵形式
对应支持向量机的 惩罚参数c,xi2对应支持向量机的核函数参数g ;取最大迭代次数MaxCN为50、并指定用于 判断个体是否陷入停滞的控制参数lim的值为30 ;构建训练样本,具体为:在特征样本集Si 中每隔五度射角选出一个样本构建训练样本集y」,下标j表示训练样本数,j为正整数;特 征样本集Si中减去训练样本集h后剩下的样本作为识别测试数据; b2.将步骤bl中构建的训练样本数据随机分为K组,分别用每一组子集数据做支持向 量机一次验证集,其余K-1组子集数据作为训练集,得到K个模型; b3.用步骤bl中得到的支持向量机参数X分别计算K个模型的交叉验证平均识别概率 Ι/fi,计算其适应度x = < 1 + / f _ ,选择最大适应度对应的最优解xb,Xi在最优解处任 h,.i,' 一维度进行变异X' ij = xw+R · (xw-xkj),其中,xw表示当前最优解Xb的第j维分量;x w为 个体Xk的第j维分量;j,k均随机选择,且k尹b ;R为[-1,1]间的随机数;X' υ表示新产 生的个体第j维分量,其对应的新个体记为Γ i ;再次计算变异后的适应度,和变异前适应 度比较,如增加则更新,否则保持原值,即 b4.根据Xi的适应度函数fit,,计算Xi的选择概率^ = 汾,;靠近最优解的解更容 易被选中,某个解被选中后继续进行和步骤b3相同的变异操作,记录其未更新次数/nW,.= { 〇,/(《')</(1,). [trial+ \,/{Χ])>/{Χ,) ' b5.判断是否存在连续lim次迭代都没有更新的个体,若存在,则产生一个新解代替原 来的陷入局部最优的解,具体方法为:Xi = Χ_+Φ X (Xmax_Xmin);其中,Φ表示区间[〇, 1]内 的随机数,Xmax和Xmin是解空间的上、下边界; b6.判断是否达到最大迭代次数MaxCN,若是,则输出当前记录的最优解作为支持向量 机最优参数,若否,则回到步骤b2。
4.根据权利要求3所述的一种基于常规雷达的炮弹目标识别方法,其特征在于, 步骤c中,根据特征样本Sy设(Si>yi)为训练样本,其中y表示对目标的编号,取值-1 或者+1 ;将步骤b中获得的最优惩罚因子c和核函数参数g代入支持向量机,其中核 函数采用公式K (Si, Sj) = exp {-g I I Si_Sj I 12},其中Si和Sj表示第i、j个特征样本; 设超平面ω · S+b = 0,选择最优超平面转化为最小化公式Φ(β^) = 4?ΜΙ2+^£^ ; 8?^[(ωτφ (Si))+b]彡1-ξρ ξ?彡0,i = 1,2,…,η其中,ω为超平面的法向量, c为惩罚因子,b为偏置,ζ为松弛变量;引入Lagrange函数,让二次规划问题转化 I I / / ! 成对偶问题,即为求maxQ⑷=Σα-K.(s"s'.,) ;j j-l Z i-l J-l j-l =1,2,...,1,%彡0;可以得最优解:a* = (<<,...,〇T;最优权值向量: l l w=;最优偏置:^=x -Σ^/[(^/,民);从而可构建支持向量机分类器 函数为: /(.S·) = sgn\((0 S) + b*| ^sgn £7^yjK{Sj,S) + b,l 〇 M
【文档编号】G01S7/02GK104122530SQ201410341144
【公开日】2014年10月29日 申请日期:2014年7月17日 优先权日:2014年7月17日
【发明者】周代英, 贾继超, 田兵兵, 谭敏洁, 谭发曾, 余为知, 黄健 申请人:电子科技大学