一种农药残留的检测方法、装置及系统的制作方法
【专利摘要】一种农药残留的检测方法、装置及系统,所述方法包括:获取待检测物体的高光谱图像数据;对所述高光谱图像数据进行降维处理,获取光谱曲线,所述光谱曲线包括特征波长下的光谱曲线;基于对所述光谱曲线的分析确定所述待检测物体的农药残留。该方法可以快速检测待检测物体的农药残留,且该方法无需损坏待检测物体,是一种无损、安全的检测方法。
【专利说明】一种农药残留的检测方法、装置及系统
【技术领域】
[0001]本发明涉及农药检测【技术领域】,尤其涉及一种农药残留的检测方法、装置及系统。【背景技术】
[0002]水果和蔬菜是人们日常饮食中最重要的组成部分之一。农药在果蔬的种植过程中起到病虫草害的防治作用,但是农药并不能全部被植物吸收,大部分仍残留在果实表面。由于目前我国农药品种结构不合理,加之有些使用者违反规定不合理使用农药,以及农药残留监管力度不够等原因,致使我国农药残留问题比较突出。近年来因过量使用农药而造成的农药中毒现象屡见不鲜,主要表现在:一是由于在蔬菜瓜果上使用高毒农药引起农药急性中毒事故;二是农副产品中农药残留量超过最高残留限量。农药残留是指农药使用后一个时期内没有被分解而残留于生物体上的农药,它不仅可以通过环境和食物链的作用间接对人体健康造成潜在危害,而且农药最高残留限量也成为各贸易国之间重要的技术壁垒。有些国家对我国出口的农产品制定了严格的环保技术标准,使我国蔬菜水果进入国际市场面临着绿色壁垒。
[0003]农药残留已成为食品中的主要安全问题,随着人们生活水平的提高,健康环保意识的增强,消费者越来越关注果蔬质量安全问题,其中果蔬表面的农药残留问题尤其备受关注。因此,加强蔬菜、水果中农药残留的检测势在必行。
[0004]现有技术中,已有薄层色谱法、气象色谱法、高效液相色谱法、超临界流体色谱法等等。但现有技术中的农药残留的检测方法通常都是有损检测方法,以目前用于农药残留检测最普遍、最成熟的气相色谱法为例,目前多达70%的农药残留可用气相色谱法来检测,但所述气相色谱法也是有损检测的方法。
[0005]用有损检测的方法来检测农药残留,存在着检测周期长、实验过程复杂、化学试剂消耗两大、污染环境、操作需要专业人员、不易推广以及对样品有破坏性等缺点。
【发明内容】
[0006]本发明解决的问题是有损检测方法中存在的检测方法复杂、对待检测物体有损伤以及检测周期长的问题。
[0007]为解决上述问题,本发明技术方案提供一种农药残留的检测方法,包括:
获取待检测物体的高光谱图像数据;
对所述高光谱图像数据进行降维处理,获取光谱曲线,所述光谱曲线包括特征波长下的光谱曲线;
基于对所述光谱曲线的分析确定所述待检测物体的农药残留。
[0008]可选的,所述高光谱图像数据通过光谱成像仪获取。
[0009]可选的,所述对所述高光谱图像数据的进行降维处理包括:
通过主成分分析法和线性鉴别分析法中的任意一种方法对所述高光谱图像数据进行降维处理。[0010]可选的,所述基于对所述光谱曲线的分析确定所述待检测物体的农药残留包括: 对所述光谱曲线进行光谱分析;
基于所述光谱分析结果中农药残留区域的光谱曲线和无农药残留区域的光谱曲线的差异确定所述待检测物体的农药残留结果。
[0011]为解决上述技术问题,本发明技术方案还提供一种农药残留的检测装置,包括:
获取单元,适于获取待检测物体的高光谱图像数据;
降维单元,适于对所述高光谱图像数据进行降维处理,获取光谱曲线,所述光谱曲线包括特征波长下的光谱曲线;
确定单元,适于基于对所述光谱曲线的分析确定所述待检测物体的农药残留。
[0012]可选的,所述确定单元包括:
光谱分析单元,适于对所述光谱曲线进行光谱分析;
差异比较单元,适于基于所述光谱分析结果中农药残留区域的光谱曲线和无农药残留区域的光谱曲线的差异确定所述待检测物体的农药残留结果。
[0013]本发明技术方案还提供一种农药残留的检测系统,包括光谱成像仪,还包括: 如上所述的农药残留的检测装置。
[0014]与现有技术相比,本发明的技术方案具有以下优点:
获取待检测物体的高光谱图像数据,并对所述高光谱图像数据进行降维处理,获取包含有特征波长的光谱曲线,基于对所述光谱曲线的分析确定所述待检测物体的农药残留。该方法可以快速检测待检测物体的农药残留,且该方法无需损坏待检测物体,是一种无损、安全的检测方法。
【专利附图】
【附图说明】
[0015]图1是本发明实施例提供的硬件环境示意图;
图2是本发明实施例提供的农药残留的检测方法的流程示意图。
【具体实施方式】
[0016]如【背景技术】所述,现有技术中的农药残留的检测方法通常都是有损检测方法,用有损检测的方法来检测农药残留,存在着检测周期长、实验过程复杂、化学试剂消耗两大、污染环境、操作需要专业人员、不易推广以及对样品有破坏性等缺点。
[0017]为解决有损检测方法中存在的问题,本发明技术方案提供一种无损检测的技术方法。
[0018]无损检测技术是有别于传统检测手段的一种新兴技术,无损检测技术是在不破坏被检对象的前提下,运用各种物理学的方法如声、光、电等对物体进行检测分析的一种技术。
[0019]本发明技术方案所采用的光谱成像技术是一种无损的检测技术。
[0020]光谱成像技术是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术,其最大特点是将成像技术与光谱探测技术结合,在对目标的空间特征成像的同时,对每个空间像元经过色散形成几十个乃至几百个窄波段以进行连续的光谱覆盖。其中,高光谱图像技术通过搭载在不同空间平台上的高光谱传感器,即成像光谱仪,在电磁波谱的紫外、可见光、近红外和中红外区域,以数十至数百个连续且细分的光谱波段对目标区域同时成像,在获得地表图像信息的同时,也获得其光谱信息,真正做到了光谱与图像的结合。
[0021]在高光谱图像的图像信息和光谱信息中,图像信息可以反映样本的大小、形状、缺陷等外部品质特征,而光谱信息能充分反映样品内部的物理结构、化学成分的差异,这些特点决定了高光谱图像技术在农产品内外部品质的检测方面的独特优势。
[0022]本发明技术方案基于光谱技术实现对待检测物体的农药残留的检测。在本发明技术方案提供的农药残留的检测方法中,首先获取待检测物体的高光谱图像数据,通过对所述高光谱图像数据进行降维处理,获取含有特征波长下的光谱曲线,进而基于对所述光谱曲线的分析确定所述待检测物体的农药残留。
[0023]本发明技术方案通过高光谱图像技术对待检测物体的农药残留进行检测,是一种无损坏性的检测,可以保留农产品等待检测物体的完整外表,且其检测速度较快,不需花费大量时间进行样本预处理和常规分析,该方法具有实时、高效、快速以及无损检测的优点。
[0024]为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
[0025]在本实施例中,可以通过如图1所示的硬件环境实现对待检测物体的农药残留的检测。
[0026]通过光谱成像仪获取待检测物体的高光谱图像数据,将所述高光谱图像数据通过无线或者有线的方式传递到电脑、手机等处理设备上,所述处理设备可以实现对通过光谱成像仪所获取的高光谱图像数据的降维和去噪处理,并得到包含有特征波长的光谱曲线,所述处理设备还可以基于对所述光谱曲线的分析而确定所述待检测物体的农药残留。所述无线或者有线的方式包括USB传输方式、串口传输方式、蓝牙传输方式以及红外传输方式
坐·寸ο
[0027]在其它实施例中,也可以包括如图1所示的服务器,在处理设备得到含有特征波长的光谱曲线后,将所述光谱曲线通过网络传递到网络端的预先设定好的服务器上,在服务器上可以预先存储有与农药残留情况相对应的光谱曲线,则可以在服务器接收到来自处理设备的光谱曲线后,通过对比分析将检测结果反馈给处理设备,也可以在服务器上直接基于处理设备所传送的光谱曲线的分析而得到所述待检测物体的农药残留结果,服务器在得到检测结果后也可以通过网络将结果传回到手机或者PC等,用户可以基于检测结果实时对物体进行检测。
[0028]实现对待检测物体的农药残留的检测方法的流程,请参考图2,图2是本发明实施例提供的农药残留的检测方法的流程示意图。
[0029]如图2所示,首先执行步骤S201,通过光谱成像仪采集高光谱图像数据。
[0030]在400-1000纳米的可见光和近红外的光谱范围内,通过光谱成像仪采集蔬果等待检测物体的高光谱图像数据,在采集的过程中,可以同时考虑到成像时的曝光时间、光谱成像仪的扫描速度等,以获取较好的待检测物体的三维成像效果。
[0031]执行步骤S202,对所述高光谱图像数据进行降维处理,获取光谱曲线。
[0032]由于高光谱图像数据是从可见光到近红外的几百个连续的窄波段内获取的图像数据,因此,它具有很高的光谱分辨率,对蔬果等待检测物体的检测可以更加准确,但较大的数据量也给数据处理过程带来一定的困难。
[0033]由于高光谱图像数据不同波段像素之间存在极强的互相关性,图像间存在着大量的冗余信息,不是所有的波段都有同等的重要性,我们可以通过选择最佳波段组成新的高光谱图像数据空间,可以在不损失重要信息的条件下反映其他波段的信息,同时也可以有效降低计算量。
[0034]高光谱图像数据中有用的图像信息通常集中在较低维的空间中,因此,减小高光谱图像数据的维数是不会对有用的图像信息造成损失的。现有技术中,有多种高光谱图像数据降维方法,例如通过主成分分析法(PCA)、线性鉴别分析法(LDA)等实现对所述高光谱图像数据的降维处理。
[0035]主成分分析法是一种简化数据集的技术,它是把数据变换到一个新的坐标系统中的线性变换,可减少数据集的维数,同时保持数据集中贡献最大的特征。线性鉴别分析法可以在减少数据集维数的同时尽可能的保留数据集中的差别信息。
[0036]通常,可以采用主成分分析法对高光谱图像数据进行降维处理,也可以通过线性鉴别分析对高光谱图像数据进行降维处理并得到差别信息,在本实施例中,可以结合主成分分析法和线性鉴别分析法以实现在高光谱图像数据进行降维的处理过程中,可以同时保留数据中的差别信息。在此步骤中,也可以对所述高光谱图像数据进行去噪处理,提高图像处理结果的准确性。
[0037]通过对高光谱图像数据进行降维和去噪处理,可以实现对原图像数据中波段之间的多余信息、冗余信息等的处理,将多波段的图像信息压缩到原波段更有效的少数几个转换波段,然后找出特征波长下的光谱曲线图像。
[0038]执行步骤S203,基于对所述光谱曲线的分析确定所述待检测物体的农药残留。
[0039]根据高光谱图像数据具有多光谱通道、高光谱分辨率和连续光谱等特点,在本步骤中,对含有特征波长下的光谱曲线图像进行光谱分析,得到包含有农药残留区域和无农药残留区域的连续光谱曲线。由于光谱信息能充分反映物体内部的物理结构、化学成分的差异,也可以理解为对于农药中的不同的化学成分,会有不同的光谱曲线与其对应,而且对于同一种化学成分,其含量不同,得到的光谱曲线也会有所不同,则在得到光谱曲线后也就可以相应的得到当前待检测物体所含有的农药中的化学成分、化学成分含量等信息,进而可以实现对于待检测物体的农药残留的检测。
[0040]可以预先通过一定量的含有不同农药成分、以及不同成分含量的物体样本,基于高光谱图像数据,得到其分别对应的不同的光谱曲线,则在对待检测物体进行检测的时候,可以基于待检测物体的高光谱图像数据所得到个光谱曲线与样本的光谱曲线的对比分析等操作,得到待检测物体的农药残留成分、含量等信息,基于农药残留区域的光谱曲线和无农药残留区域的光谱曲线的差异,判断所述待检测物体是否有农药残留。
[0041]该方法可以快速检测待检测物体的农药残留,且该方法无需损坏待检测物体,是一种无损、安全的检测方法。
[0042]本发明实施例还提供一种农药残留的检测装置,包括:获取单元,适于获取待检测物体的高光谱图像数据;降维单元,适于对所述高光谱图像数据进行降维处理,获取光谱曲线,所述光谱曲线包括特征波长下的光谱曲线;确定单元,适于基于对所述光谱曲线的分析确定所述待检测物体的农药残留。[0043]所述确定单元包括:光谱分析单元,适于对所述光谱曲线进行光谱分析;差异比较单元,适于基于所述光谱分析结果中,基于农药残留区域的光谱曲线和无农药残留区域的光谱曲线的差异确定所述待检测物体的农药残留结果。
[0044]本实施例还提供一种农药残留的检测系统,包括光谱成像仪和如上所述的农药残留的检测装置。
[0045]本发明不局限于上述最佳实施方式,任何人在本发明的启示下作出的结构变化和方法改进,凡是与本发明具有相同或相近哦技术方案,均落入本发明的保护范围之内。
【权利要求】
1.一种农药残留的检测方法,其特征在于,包括: 获取待检测物体的高光谱图像数据; 对所述高光谱图像数据进行降维处理,获取光谱曲线,所述光谱曲线包括特征波长下的光谱曲线; 基于对所述光谱曲线的分析确定所述待检测物体的农药残留。
2.如权利要求1所述的农药残留的检测方法,其特征在于,所述高光谱图像数据通过光谱成像仪获取。
3.如权利要求1所述的农药残留的检测方法,其特征在于,所述对所述高光谱图像数据的进行降维处理包括: 通过主成分分析法和线性鉴别分析法中的任意一种方法对所述高光谱图像数据进行降维处理。
4.如权利要求1所述的农药残留的检测方法,其特征在于,所述基于对所述光谱曲线的分析确定所述待检测物体的农药残留包括: 对所述光谱曲线进行光谱分析; 基于所述光谱分析结果中农药残留区域的光谱曲线和无农药残留区域的光谱曲线的差异确定所述待检测物体的农药残留结果。
5.一种农药残留的检测装置,其特征在于,包括: 获取单元,适于获取待检测物体的高光谱图像数据; 降维单元,适于对所述高光谱图像数据进行降维处理,获取光谱曲线,所述光谱曲线包括特征波长下的光谱曲线; 确定单元,适于基于对所述光谱曲线的分析确定所述待检测物体的农药残留。
6.如权利要求1所述的农药残留的检测方法,其特征在于,所述确定单元包括: 光谱分析单元,适于对所述光谱曲线进行光谱分析; 差异比较单元,适于基于所述光谱分析结果中农药残留区域的光谱曲线和无农药残留区域的光谱曲线的差异确定所述待检测物体的农药残留结果。
7.—种农药残留的检测系统,包括光谱成像仪,其特征在于,还包括: 如权利要求5或6所述的农药残留的检测装置。
【文档编号】G01N21/25GK103868857SQ201410054219
【公开日】2014年6月18日 申请日期:2014年2月18日 优先权日:2014年2月18日
【发明者】梁元, 郭科, 周仲礼, 魏友华, 柳炳利 申请人:成都理工大学